
The InterGroup Protocols:

Scalable Group Communication

for the Internet

Karlo Berket1

December 4, 2000

1This work was supported by the Director, O�ce of Science. O�ce of Ad-

vanced Scienti�c Computing Research. Mathematical, Information, and Computa-

tional Sciences Division, U.S. Department of Energy under Contract No. DE-AC03-

76SF00098.

2

UNIVERSITY OF CALIFORNIA

Santa Barbara

The InterGroup Protocols:

Scalable Group Communication

for the Internet

A Dissertation Submitted in Partial Satisfaction
of the Requirements for the Degree of

Doctor of Philosophy
in

Electrical and Computer Engineering
by

Karlo Berket

Committee in charge:
Professor Louise E. Moser, Chair
Professor P. M. Melliar-Smith
Professor Steve Butner

Professor Klaus Schauser

Doctor Deb Agarwal

December 2000

The Dissertation of Karlo Berket
is approved:

Committee Chairman

December 2000

ii

30 September, 2000

cCopyright by

Karlo Berket

2000

iii

ACKNOWLEDGMENTS

The route to the completion of my dissertation has been long and winding.

There are many people to be thanked for helping me along the way.

Firstly, I would like to thank my advisors Professor Michael Melliar-Smith

and Professor Louise Moser for their guidance and support. I would also like

to thank my committee members, Deb Agarwal, Professor Steven Butner and
Professor Klaus Schauser, for their advice and time.

The stay in the lab was enjoyable and memorable due to the companionship
of Elizabeth, Kim, Lauren, Mike, Nitya, Priya, Raj, Ravi, Ruppert, Stratis,
Vana, and Wenbing. Thanks to one and all.

I would like to thank all my friends, you know who you are, for all their
help and support throughout.

Finally, I would like to thank my family and my parents, for being with
me at each step of this arduous, though memorable and enjoyable, journey.

This work was supported by the Collaboratory Interoperability Framework project,

a part of the DOE2000 program.

iv

VITA

1995 B.E.

Department of Electrical Engineering

The Cooper Union for the Advancement of Science and Art

1996 M.S.

Department of Electrical and Computer Engineering

University of California, Santa Barbara

1996-1997 Researcher

Department of Electrical and Computer Engineering

University of California, Santa Barbara
1997-2000 Researcher

Distributed Systems Department
Ernest Orlando Lawrence Berkeley National Laboratory

PUBLICATIONS

� \A group communication protocol for CORBA," with L. E. Moser, P. M.
Melliar-Smith, and R. Koch, Proceedings of the International Workshop

on Group Communication, Aizu-Wakamatsu, Japan, September 1999,
pp. 30{36.

� \Multicast group communication for CORBA," with P. M.Melliar-Smith,
L. E. Moser, P. Narasimhan and R. Koch, Proceedings of the Interna-

tional Symposium on Distributed Objects and Applications, Edinburgh,
Scotland, September 1999, pp. 98{107.

� \Timestamp acknowledgments for determining message stability," with

R. Koch, L. E. Moser and P. M. Melliar-Smith,Proceedings of the 2nd In-

ternational Conference on Parallel and Distributed Computing and Net-

working, Brisbane, Australia, December 1998, pp. 1{8.

� \The InterGroup Protocols: Scalable Group Communication for the In-

ternet" with L. E. Moser and P. M. Melliar-Smith, Proceedings of the
Third Global Internet Mini-Conference (in conjunction with Globecom

'98), Sydney, Australia, November 1998.

v

� \Self-stabilizing multiple-sender/single-receiver protocol," with R. Koch,

Proceedings of the 3rd Workshop of Self-Stabilizing Systems, Santa Bar-

bara, CA, August 1997, pp. 170{184.

� \On technologies in computer networks and distributed systems," with

R. K. Budhia, K. P. Kihlstrom, R. Koch, N. Narasimhan, P. Narasimhan,

E. M. Royer, M. D. Santos, A. Shum, E. Thomopoulos, P. M. Melliar-

Smith and L. E. Moser, looking.forward, The IEEE Computer Society's

Student Newsletter, vol. 5, no. 3, Fall 1997, pp. 2{6.

FIELDS OF STUDY

Major Field: Computer Engineering

Studies in Group Communication Systems
Professors P. M. Melliar-Smith and L. E. Moser

vi

ABSTRACT

The InterGroup Protocols:

Scalable Group Communication

for the Internet

by
Karlo Berket

Reliable group ordered delivery of multicast messages in a distributed sys-
tem is a useful service that simpli�es the programming of distributed appli-
cations. Such a service helps to maintain the consistency of replicated infor-

mation and to coordinate the activities of the various processes. With the
increasing popularity of the Internet, there is an increasing interest in scal-
ing the protocols that provide this service to the environment of the Internet.
The InterGroup protocol suite, described in this dissertation, provides such a
service, and is intended for the environment of the Internet with scalability to

large numbers of nodes and high latency links.
The InterGroup protocols approach the scalability problem from various

directions. They rede�ne the meaning of group membership, allow voluntary
membership changes, add a receiver-oriented selection of delivery guarantees
that permits heterogeneity of the receiver set, and provide a scalable reliability

service.
The InterGroup system comprises several components, executing at various

sites within the system. Each component provides part of the services nec-

essary to implement a group communication system for the wide-area. The
components can be categorized as: (1) control hierarchy, (2) reliable multicast,
(3) message distribution and delivery, and (4) process group membership.

We have implemented a prototype of the InterGroup protocols in Java, and

have tested the system performance in both local-area and wide-area networks.

vii

viii

Contents

1 Introduction 1

1.1 Related Work . 3

1.2 The InterGroup System . 5

1.3 Delivery Services . 8

1.3.1 Unreliable Unordered Message Delivery 8

1.3.2 Reliable Source Ordered Delivery 8

1.3.3 Reliable Group Timestamp Ordered Delivery 9

2 Control Hierarchy 11

2.1 Model . 11

2.2 Data Structures . 12

2.2.1 Objects . 13

2.2.2 Control Messages . 14

2.2.3 Internal Variables . 17

2.3 Distribution Protocols . 19

2.4 Distance Calculation . 20

2.5 Self-Determination Protocol 23

2.6 Hierarchy Maintenance . 25

2.6.1 Initialization of a Control Process 25

2.6.2 State Transitions . 26

2.6.3 Fault Detection and Handling 27

3 Reliable Multicast 29

3.1 Model . 29

3.2 Data Structures . 30

ix

3.2.1 Messages . 30

3.2.2 Internal Variables . 31

3.3 Retransmission Requests . 33

3.4 Retransmission of Data . 34

3.5 Bu�er Management . 35

4 Data Transmission and Delivery 37

4.1 Model . 38

4.2 Data Structures . 39

4.2.1 Data Message . 39

4.2.2 Keep Alive Message . 40

4.2.3 Application Data Message 40

4.3 A Variation of Lamport Time 41

4.4 Determining Message Stability 41

4.5 Data Transmission . 41

4.5.1 Internal Variables . 41

4.5.2 Data Transmission Algorithms 42

4.5.3 Flow Control and Congestion Avoidance 42

4.6 Unreliable Unordered Delivery 43

4.7 Reliable Source Ordered Delivery 44

4.7.1 Setup . 44

4.7.2 Ordering and Delivery 44

4.8 Reliable Group Timestamp Ordered Delivery 47

4.9 Future Work . 50

5 Process Group Membership 51

5.1 Model . 51

5.2 The Data Structures . 52

5.2.1 Internal Messages (Events) 52

5.2.2 Network Messages . 54

5.2.3 Internal Variables . 57

5.3 The Process Group Membership Protocol 57

5.3.1 Bootstrap . 58

5.3.2 Leaving the Receiver State 61

5.3.3 Leaving the Sender State 62

x

5.4 Membership Repair Algorithm 64

5.4.1 Data Structures . 64

5.4.2 The Protocol . 65

5.5 Receiver Membership Repair Algorithm 70

5.5.1 Data Structures . 71

5.5.2 The Protocol . 71

5.6 Process and Network Fault Detector 73

6 Implementation 75

6.1 The InterGroupThreadedModule 75

6.2 The Statistics Gathering Infrastructure 76
6.2.1 Client-side Implementation 77
6.2.2 Server-side Implementation 77
6.2.3 Statistics Messages . 77
6.2.4 The WAN Testbed . 78

7 Performance 79

7.1 Local-area Environment . 80
7.1.1 Throughput Measurements 80
7.1.2 Latency Measurements 81
7.1.3 Protocol Overhead . 85

7.2 Wide-area Environment . 86

8 Conclusion and Future Work 89

xi

List of Figures

2.1 The control hierarchy. 12

2.2 Determining the inter-message interval. 21

2.3 Pseudocode for the distribution of control messages. 22

2.4 Pseudocode for TO CHILD state. 27

3.1 Dynamic adjustment algorithm for the request timer parameters. 34

3.2 Dynamic adjustment algorithm for the repair timer parameters. 35

4.1 Algorithm for detecting missing messages. 45

4.2 Algorithm for ordering and delivering messages for the reliable
source ordered message delivery service. 46

4.3 Algorithm for source ordering messages for the reliable times-
tamp group ordered message delivery service. 48

4.4 Algorithm for ordering and delivering messages for the reliable
group timestamp ordered message delivery service. 49

5.1 State machine for the initialization of the membership protocols. 59

5.2 How the Receiver state is left in the membership protocols. . . 61

5.3 How the Sender state is left in the membership protocols. . . . 63

5.4 The Membership Repair Algorithm 66

5.5 Pseudocode for consensus. 67

5.6 Reasons for restarting consensus. 68

5.7 The Receiver Membership Repair Algorithm. 72

7.1 The delivery latency distribution at full throughput for four nodes. 83

7.2 The application delivery latency distribution for four nodes. . 84

7.3 The application delivery latency distribution for sixteen nodes. 85

xii

7.4 The application delivery latency between ANL and LBNL. . . 87

xiii

List of Tables

2.1 Distance calculation . 22

2.2 Evaluating Appropriateness. 24
2.3 Conditions for determining whether the state change should oc-

cur. The change continues if these conditions are satis�ed. . . 24
2.4 Timers based on appropriateness values. 25

7.1 Data throughput on the CS cluster. 80
7.2 Data Throughput on the Laboratory LAN. 82
7.3 Delivery latency at full throughput. 82
7.4 Delivery latency at 10 msgs/sec send rate at each sender. . . . 84

7.5 Protocol overhead. 86

xiv

Chapter 1

Introduction

Reliable group ordered delivery of multicast messages in a distributed system
is a useful service that simpli�es the programming of distributed applications.
With such a delivery service, provided by multicast group communication pro-

tocols, all processes in each group of the application receive the same messages
in the same order. Such a service helps to maintain the consistency of repli-
cated information and to coordinate the activities of the various processes.

In addition, multicast group communication protocols provide a member-
ship service that allows the system to make progress in the presence of process
faults. Such protocols require the group membership and delivery order to
obey a form of virtual synchrony [12, 42, 8, 21].1 Virtual synchrony and its

variations de�ne consistency constraints on processes transitioning between
memberships.

With the increasing popularity of the Internet, there is an increasing in-

terest in multicast group communication protocols that are scalable to the
environment of the Internet. IP multicast [19] provides a scalable best-e�ort
multicast service for the Internet, and is a valuable building block for group

communication systems. It might appear that the same group communication

protocols that work well over LANs could be run over IP multicast. Unfortu-
nately, these protocols do not, in general, scale well to large numbers of nodes

1Some protocols require that, for each message delivered, a membership regarding that
message be delivered. This results in running a consensus algorithm for every message,
resulting in severe scalability problems, so these protocols will not be discussed.

1

2 CHAPTER 1. INTRODUCTION

and wide-area networks, such as the Internet. The ordering, reliability and

membership algorithms of existing LAN-based protocols are not scalable.

The main hindrances to scalability of existing group communication sys-

tems are the message delivery guarantees provided to the application and their

e�ect on the way in which membership is maintained. Group communication

protocols require the group membership and the delivery order to obey a form

of virtual synchrony.

Such requirements result in expensive (in time and messages required)

membership repair algorithms. There appears to be no way around those
membership repair algorithms, which require a consensus decision to be made.
The message cost of those algorithms is O(n2), where n is the number of pro-
cesses in the group. Furthermore, the interval between membership changes is

inversely proportional to n and, thus, if the value of n is large, too much time
can be spent in the membership protocol itself.

To ensure virtual synchrony, many group communication protocols stop
delivering messages while membership changes are taking place and, thus,
for large values of n, they might deliver no messages at all. Nevertheless, to
obtain a consistent view of the membership and to ensure the message delivery
guarantees, membership repair algorithms must be run. In traditional group

communication systems, every process in a process group is treated as an
equal. When the system requires a consensus decision, such as that used in a
membership repair algorithm, every process participates.

Another problem that arises with the increase in size of these systems is
providing a scalable reliability service. The biggest concern in building such
a service is in consuming excessive bandwidth to provide the service. There
has been a large amount of research in this area recently, mostly in the single

sender case. However, most of the solutions are geared towards providing a

scalable solution for error recovery and correction, and do not provide ordering
and membership services.

Also, in traditional group communication systems, the delivery of messages
from a process group to the application, is determined, either system-wide or
by the individual senders. Thus, every process must provide the same delivery

services.

The InterGroup protocol suite, described in this dissertation, is a group

communication system that is intended for the environment of the Internet

1.1. RELATED WORK 3

(long latencies, high message loss rates, relatively frequent partitioning) with

scalability to large numbers of sites and high latency links.

1.1 Related Work

To provide video conferencing and other multicast services, the MBone (Mul-

ticast Backbone) was created as an experimental overlay network within the

Internet. Through the years, multicast capability has been added to routing
equipment by equipment vendors. The IP Multicast capability on the Internet
today is provided by native multicast capable routers and the remnants of the
original overlay network.

IP Multicast-based routing was established to allow distributed applica-
tions to achieve \real-time" communication over wide-area IP networks through
a lightweight model of communication. The IP multicast routing and deliv-
ery models comprise multiple protocols that provide a UDP-based best-e�ort

delivery service to the applications.This means that, when a message is sent,
it has some probability of getting to the group members. There is no service
provided for determining who received the message or even who the group
members are.

Reliable message delivery is an important part of network communication.
TCP/IP [15] provides this service for unicast communication. Recently, it has
been recognized that group communication applications have a wider range of
requirements than unicast applications. This has made the idea of a single,

generic reliable multicast protocol for all group communication applications
infeasible. Thus, a lot of research has focused on the mechanisms for error

recovery and correction.

The current work on error recovery and correction has identi�ed three

types of reliability mechanisms: (1) acknowledgment-based (ACK-based), (2)
negative acknowledgment-based (NACK-based), and (3) forward error correc-
tion (FEC) based.2 In ACK-based protocols[57, 56, 28, 48, 63], the receivers

send messages acknowledging the reception of messages. In NACK-based

protocols[23, 14, 18, 29, 55], the receivers do not acknowledge the reception

2Some of these protocols are actually hybrids that combine more than one mechanism;
we will focus on the primary mechanism when discussing them.

4 CHAPTER 1. INTRODUCTION

of messages; instead, they send messages indicating that a message has not

been received. FEC-based protocols [60, 47, 51] place redundant information

in every message that they send, allowing the receivers to recover a subset of

messages that they do not receive. Each mechanism has a number of prop-

erties associated with it, and the protocols are di�erentiated by their use of

these properties.

The Reliable Multicast Transport (RMT) working group of the IETF aims

to standardize protocols that provide mechanisms for error recovery and cor-

rection, and categorizes these protocols as reliable multicast transport proto-

cols. Currently, the e�orts of this working group are focused primarily on the
standardization of the one-to-many transport of large amounts of data[30].

Group communication systems provide membership and ordering services
in addition to error recovery and correction. Typical applications that might
use a group communication system include state-machine replication ([20, 45,
25, 32, 22]), distributed transactions and database replication ([52, 33]), load
balancing ([34]), system management ([4]), system monitoring ([3]), highly

available servers ([20, 45, 41]), and collaborative computing ([50, 11, 1, 16, 36,
26]). All of these applications require similar delivery guarantees.

Group communication systems typically o�er one or more of the following
ordering properties: source ordered, causal ordered, group ordered and total
ordered. With a group communication system, messages are delivered within
the context of views, i.e., every message delivered to the application has a

view associated with it. A view has an associated group membership, and the
membership mechanisms are in charge of installing view changes.

Early group communication systems were designed with a focus on provid-
ing a limited number of services, and good performance in an asynchronous

setting. These systems include: Isis [13], Trans/Total[39, 43], Transis[7, 6],

Newtop[21], Phoenix[38], RMP[62], and Totem[2, 44], In general, these pro-
tocols do not scale well to large numbers of nodes and wide-area networks.

Additionally, the monolithic nature of these systems make them hard to re-
tool.

Later systems started a move towards a \building block" approach to de-
signing the protocols. These systems focused on functional decomposition of

mechanisms to build additional services. These systems include Horus[59] and

Ensemble[58].

1.2. THE INTERGROUP SYSTEM 5

Existing work on WAN-enabled group communication systems has focused

on retooling an existing system or building hybrid protocols (Spread[5], Atomic

Group[35]).

Spread combines the single-ring approach of Totem at the site level. Be-

tween sites the Spread protocols create their own topology for distributing

data. Messages are ordered across the rings to provide a system-wide order-

ing.

Atomic Group is a group communication system designed for ATM net-

works. The Atomic Group protocols create their own topology for distributing
data. Processes are organized into local groups where the initial group order-
ing is done. Ordering across groups occurs when processes join more than one
group.

Group communication systems vary in their de�nitions of services o�ered

and in the terminology used. This has led to attempts to de�ne a comprehen-
sive set of properties of group communication systems that reect numerous
existing group communication system implementations[42, 24, 9, 22, 27, 61].
Such an exercise is useful for de�ning the delivery guarantees of a group com-
munication system and relating them to other systems.

1.2 The InterGroup System

The InterGroup protocols approach the scalable group communication prob-
lem from various directions. Our solution includes rede�ning the meaning of
group membership, allowing voluntary membership changes, adding a receiver-
oriented selection of delivery guarantees that permits heterogeneity of the re-

ceiver set, and providing a scalable reliability service.

We attempt to cut down on the cost of the membership repair algorithms
using the following strategies. In the InterGroup system, not all processes are
equal. In each process group, a process is classi�ed by its recent activity. If the

process has been sending data to the group recently, it is classi�ed as an active

sender. Active senders are members of the sender group of the process group.
Only the senders in the process group need to participate in the majority

of consensus decisions. We also use voluntary mechanisms for entering and
leaving the group. Voluntary mechanisms can take advantage of the properties

of the system to avoid executing the membership repair algorithms.

6 CHAPTER 1. INTRODUCTION

We step away from the traditional approach of choosing a delivery service

to provide more exibility to the application and to reduce the costs of the

membership repair algorithms. In the InterGroup system, the delivery of mes-

sages from a process group is determined by the application, at the receiving

end. Each process may choose a di�erent delivery service. The InterGroup

system provides the following delivery services within a process group:

� Unreliable unordered. Messages received from the process group are

delivered directly to the application. Some messages might never be

received, and multiple copies of the same message might be received.
Moreover, there is no guarantee on the order in which messages are
received. IP Multicast provides this functionality.

� Reliable source ordered. All messages from a particular source will
be received by the application (unless a process failure occurs), and they

will be delivered in sequence number order. This service is well suited to
applications like multicast �le transfers and other applications currently
using TCP/IP [15]. The services provided are similar to TCP/IP.

� Reliable group timestamp ordered. Messages are received by the
application in timestamp order over the entire process group. The mem-

bership service ensures that the receipt of messages by the application
obeys virtual synchrony. This service is closest to the idea of agreed
messages in group communication systems[2].

Although, we previously stated that the processes in the sender group can
usually make consensus decisions by themselves there are some decisions that

involve processes not in the sender group. The categorization of processes by

their delivery service allows us to determine which processes must participate
in those decisions. In the InterGroup system, only the processes that are in
the sender group and/or have speci�ed a delivery service of reliable group

timestamp ordered need to participate in the consensus decisions required by

the membership repair algorithms. This reduces the number of processes that
need to run the consensus protocol and, thus, improves the scalability of the

system.
The control information in the InterGroup system is communicated through

a control group. The control group consists of exactly one control process from

1.2. THE INTERGROUP SYSTEM 7

every site in the system. A control process runs independently of the other pro-

cesses at a site. Every process at a site sends and receives control information

via the control process of its site. A control process has no direct interaction

with the applications. The control processes are arranged in a self-organizing

hierarchical structure. The hierarchy organization mechanisms are based on

those used with SRM[23, 54].

SRM provides a exible mechanism for the retransmission of missing mes-

sages. The SRM retransmission algorithms require information about the la-

tency between processes to provide their services. This information is gathered

through the control hierarchy to provide additional scalability. The Inter-
Group system requires bu�er management as part of the reliability services.
The control hierarchy also provides mechanisms to gather and distribute ac-
knowledgment information (used for bu�er management) and for gathering
consensus information within the system in a scalable manner.

The InterGroup system comprises a number of components, executing at
the sites within the system. Each component provides part of the services

necessary to build a group communication system for the wide-area. The
components can be categorized as: (1) control hierarchy, (2) reliable multicast,
(3) message distribution and delivery, and (4) process group membership.

The control hierarchy is used for the exchange of control information be-
tween the sites in the system. Each site has a control process that is responsible
for the control information for all of the processes at that site. The control

hierarchy also provides a mechanism for determining message stability, and a
mechanism for reaching a weak form of consensus for the group. The control
hierarchy is explained in detail in Chapter 2.

Reliable multicast provides a mechanism to request the retransmission of

messages, a mechanism to retransmit messages, and a mechanism to detect

whether a message can be recovered. The reliable multicast protocol is ex-
plained in Chapter 3.

Message distribution and delivery entails the following tasks: perform ow

control on the messages sent to a process group, order and deliver messages
to the application based on the delivery service chosen by the application
for a process group, and detect missing messages (depending on the delivery

service). The message distribution and ordering are explained in detail in

Chapter 4.

8 CHAPTER 1. INTRODUCTION

The process group membership provides a view of the sender group mem-

bership. This view depends on the delivery service chosen by the application

and on whether the process is a member of the sender group. The process

group membership is explained in Chapter 5.

The interactions between the components and the implementation of the

system are described in Chapter 6.

1.3 Delivery Services

In this section we present the services that the InterGroup protocols provide
to the application. Each service (other than unreliable unordered message
delivery) is speci�ed by a pair of properties.

1.3.1 Unreliable Unordered Message Delivery

This service provides the delivery guarantee of the underlying communication
network i.e., IP multicast. We guarantee that there is no degradation of
that service, other than small delays. The IP multicast service can reorder
messages, lose messages and duplicate messages.

1.3.2 Reliable Source Ordered Delivery

The �rst property (1.1) of the source ordered message delivery service states

that messages from the same sender arrive in the order in which they were
sent.

Property 1.1 InterGroup Source Ordered Delivery. If a process p sends

two messages, then these messages are received in the order in which they were

sent at every process that receives both of them.

The second property (1.2) of the source ordered message delivery service

states that there are no gaps in the source order as long as the sending process
is a member of all views of the receiving process during a speci�ed interval.

1.3. DELIVERY SERVICES 9

Property 1.2 InterGroup Reliable Source Ordering. If a process p

sends message m before message m0, then any process q that receives m0 re-

ceives m as well, provided that p has been a member of the membership set of

all views between (and including) the sending of message m and the reception

of message m0 at process q.

The notion of a view at a process that has subscribed to the reliable source-

ordered message delivery service di�ers slightly from the usual notions of a

view in group communication systems (GCSs). For this service, we do not
require that the view installed at a process be consistent with the views of
other processes, or that it be precise with respect to the process group. We

are only concerned with receiving messages from one process in the process
group and, thus, only require precision with respect to that process. Therefore,
for a process p subscribing to this service from process q (i.e., q is the source),
we are only concerned with whether or not q appears in the view at process p.

1.3.3 Reliable Group Timestamp Ordered Delivery

The �rst property (1.3) of the reliable group timestamp ordered message de-
livery service states that messages are delivered in the same order at all of the
processes that deliver them, while preserving the causal relationships between
messages.

Property 1.3 InterGroup TimestampOrdered Delivery. Any two mes-

sages sent in the system are received in the same order at any process that

receives both of them. Furthermore, causality is preserved.

A causal relationship between messages is de�ned by a precedence rela-

tionship among the messages (�rst de�ned in [37]). The causal order extends

the source order by requiring that a message m is delivered after all of the
messages that were received at the sending process before it sent m.

The second property (1.4) of the reliable group timestamp ordered message
delivery service states that there are no \causal holes" in the group order as

long as the sending processes that produce the causal relationship are members

of all views of the receiving process during a speci�ed interval.

10 CHAPTER 1. INTRODUCTION

Property 1.4 InterGroup Reliable Timestamp Order. If message m

sent by process p causally precedes message m0 sent by process p0, and process

q receives m0, and p and p0 have been members of all views at process q between

(and including) the sending of m and the reception of m0 by q, then q receives

m.

Chapter 2

Control Hierarchy

This chapter describes the design of the control hierarchy used to distribute

control information in the InterGroup system. The participants are organized
in a hierarchical structure. Because the environment in which the control
protocols run has a dynamic membership and changing topology, this hierarchy
is self-organizing. The self-organizing algorithms are based on those presented
in [54], which are intended for use with SRM [23]. However, the requirements of

the InterGroup system are di�erent from those of SRM, so the self-organizing
algorithms are di�erent.

First, we present the model used in the design of the hierarchy. Next, we
present the data structures used in the control protocols. Finally, we present

the various protocols used within the control hierarchy.

2.1 Model

We consider an asynchronous distributed system consisting of n control pro-

cesses p1; p2; : : : ; pn that communicate via messages over a network. The sys-

tem is asynchronous in that no bound can be placed on the time required for
a computation or for communication of a message. Control processes have

access to local clocks. These clocks are not synchronized.

The control processes are organized as a bush, with the root control pro-

cesses called the coordinators, and the leaf control processes called the children,

as shown in Figure 2.1. Each control process may be a coordinator, a child, or

11

12 CHAPTER 2. CONTROL HIERARCHY

Coordinator

Child

Figure 2.1: The control hierarchy.

both at any given time. Each child is associated with at least one coordinator
at all times. The local group of a coordinator is composed of the children associ-

ated with that coordinator (including the coordinator itself). The coordinator
group of the hierarchy consists of all coordinators in the hierarchy.

A child multicasts messages to the other control processes in its local group.
A coordinator multicasts messages to the control processes in its local group
and to the control processes in the coordinator group. A control process re-
ceives all of its own multicast messages.

Communication between control processes is unreliable and, thus, messages

may be lost or arbitrarily delayed. Communication channels are not assumed
to be FIFO. The network is allowed to partition and remerge.

2.2 Data Structures

The control hierarchy employs a number of message types to distribute the

control information to the control processes. Each control process in the hi-

2.2. DATA STRUCTURES 13

erarchy maintains internal data constants and variables used in the control

protocols. The messages and internal variables use several common data ob-

jects, which we present �rst. Next, we explain the control messages. Finally,

we present the internal data constants and variables.

2.2.1 Objects

There are several data objects that represent the control information. These

data objects are used in control messages and/or internal variables.

Timestamp Pair Object

A timestamp pair (TP) object contains the information about the sending
and reception times of the last control message sent by a control process A
and received by a control process B. These entries are used in calculating the
distance (latency) between control processes in the control hierarchy. A TP
object contains the following �elds:

� t1: The time at which control process A sent the last control message
that control process B received.

� t2: The time at which control process B received the last control message
from control process A.

Control Process Information Object

A control process information (CPI) object for control process B, contains con-

trol information about a particular control process A. A CPI object contains
the following �elds:

� processID: The unique identi�er of control process A.

� timestampPair: A TP object regarding control processes A and B.

� ttl: The distance (in TTL) between control process A and control process
B.

14 CHAPTER 2. CONTROL HIERARCHY

� distance: The distance (in milliseconds) between control process A and

control process B.

� lastUpdated: The timestamp at which this information was last updated.

2.2.2 Control Messages

Three message types are used to communicate between control processes. Each

of the messages contains, in its header, the information necessary to process

the messages and calculate the distance information. The reliable multicast
protocol (Chapter 3) and process group membership protocol (Chapter 5)
use the data �elds contained in these control messages to calculate message

stability and the time at which a membership change occurs.

Local Control Message

A local control (LCon) message is sent by a member of a local group to that lo-
cal group. It is used for distributing control information between the members
of the group. A LCon message contains the following �elds:

� type: LCon

� senderID: The unique control process identi�er of the sender.

� ttl: The TTL with which the message was sent.

� timestamp: The local time at which the message was sent.

� coordinator: The coordinator associated with the sender of this message.
This �eld uniquely identi�es the local group to which the sender belongs
and, thus, the local group to which the message is sent.

� numLocal: The number of control processes in the local group with which
the sender is currently exchanging information (this may be a subset of

the local group).

� timestampPairEntries: An array, where the indexes are the identi�ers of

the control processes in the local group of which the sender is aware, and

2.2. DATA STRUCTURES 15

the values are TP objects where B is the sender and A be is the control

process identi�ed by the index.

� data: The application-speci�c data.

Coordinator Control Message

A coordinator control (CCon) message is sent by a coordinator to its local

group. It is used to distribute information from the coordinator to the mem-

bers of its local group. A CCon message, is used by the coordinator because
the coordinator needs to send extra information to its local members for two
reasons: (1) the coordinator is the only control process in the local group

that communicates with the other coordinators, and (2) the coordinator is the
only control process in the local group that is able to communicate with every
member of the local group. A CCon message contains the following �elds:

� type: CCon

� senderID: The unique identi�er of the sender. This �eld also uniquely
speci�es the local group to which the message is sent.

� ttl: The TTL with which the message was sent. This �eld is also, the

TTL to the control process in this local group that is the farthest from
this coordinator.

� timestamp: The local time at which the message was sent.

� farDistance: The distance (in milliseconds) to the control process, in this
local group, that is the farthest from this coordinator.

� numLocal: The number of control processes in this coordinator's local

group.

� numCoords: The number of coordinators in the coordinator group.

� timestampPairEntries: An array, where the indexes are the identi�ers of
the control processes in this local group, and the values are TP objects
where A is the sender and B is the control process identi�ed by the

index.

16 CHAPTER 2. CONTROL HIERARCHY

� localDistances: An array, where the indexes are the identi�ers of the

control processes in this local group, and the values are the calculated

distances (in milliseconds) from the sender to the control process identi-

�ed by the index.

� coordDistances: An array, where the indexes are the identi�ers of the

control processes in the coordinator group, and the values are the calcu-

lated distances (in milliseconds) from the sender to the control process

identi�ed by the index.

� data: The application-speci�c data.

Global Control Message

A global control (GCon) message is sent by a coordinator to the coordinator
group. It is used for exchanging control information between the coordinators.

A GCon message contains the following �elds:

� type: GCon

� senderID: The unique identi�er of the sender.

� timestamp: The local time at which the message was sent.

� numLocal: The number of control processes in the sender's local group.

� numCoords: The number of coordinators in this coordinator group.

� timestampPairs: An array, where the indexes are the identi�ers of the

control processes in the coordinator group, and the values are TP objects
whereA is the sender and B is the control process identi�ed by the index.

� data: The application-speci�c data.

LCon and CCon messages are sent only to the local group to which the
sender belongs. Thus, these messages are called local control messages. GCon

messages are sent to the coordinator group, but can reach control processes in

the entire system. Thus, these messages are called global control messages.

2.2. DATA STRUCTURES 17

2.2.3 Internal Variables

Each control process maintains several parameters that are constant:

� LOW STATE CHNG PARAM: The low-end hierarchy parameter. It is

used to determine the bounds on the scheduling times for a change of

state between coordinator and child.

� HIGH STATE CHNG PARAM: The high-end hierarchy parameter. It

is used to determine the bounds on the scheduling times for a change of
state between coordinator and child.

� LOW THRESH COORD SIZE: Low threshold of coordinator group size.
The number of coordinators in the hierarchy should be greater than this

number (if there are enough control processes in the hierarchy).

� HIGH THRESH COORD SIZE: High threshold of coordinator group
size. The target number of coordinators in the hierarchy is less than
this number.

� LOCAL TARGET SIZE: The target group size of the local groups.

� TARGET BANDWIDTH: The target control bandwidth. This �eld is
used for ow control.

� BOUNDARY TTL: The value that determines whether this control pro-
cess's coordinator is close to this control process. This value determines
the maximum allowable radius of a local group, i.e., the protocol at-
tempts to keep the radius of local groups below this value. In the initial

implementation, this value is set to 16.

� COORD CLOSENESS: The value that determines whether another co-
ordinator is close to this control process. This value speci�es the target
distance (in milliseconds) between any two coordinators in the group. In

the initial implementation this value is set to 30ms.

Each control process maintains the following local variables for use in the
control hierarchy protocols:

18 CHAPTER 2. CONTROL HIERARCHY

� myID: The unique identi�er of this control process.1

� state: The state of this control process in the hierarchy: COORDINA-

TOR, TO COORDINATOR, CHILD, TO CHILD.

� amChild: True if this control process is acting as a child; false otherwise.

� amCoord: True if this control process is a coordinator; false otherwise.

� myCoord: The coordinator associated with this control process. The lo-

cal group of this control process is uniquely identi�ed by the coordinator
associated with this control process. If the amCoord variable is true and
the amChild variable is false, the value of myCoord is equal to myID.

� coordTTL: The distance (in TTL) to the coordinator associated with this
control process. If the amChild variable is false, the value of coordTTL
is meaningless.

� localGroupFarTTL: The distance (in TTL) from myCoord to the local
group control process that is the farthest (in terms of TTL) from it.

� localGroupFarDistance: The distance (in milliseconds) from myCoord to

the local group control process that is the farthest (in terms of latency)
from it.

� closeCoordDistance: The distance (in milliseconds) to the closest (small-
est latency) coordinator outside my local group.

� numCoords: The number of coordinators in this control hierarchy.

� numLocals: The number of control processes in the local group to which

this control process belongs (excluding the coordinator).

� coords: The control information about the coordinators in this control
hierarchy. This is an array referenced by the unique identi�er of a co-

ordinator. The values in the array are the Control Process Info objects
representing these control processes.

1This is currently the IP address of the machine the control process is running on. No
two control processes may have the same identi�er.

2.3. DISTRIBUTION PROTOCOLS 19

� locals: The control information about the members of this control pro-

cess's local group. This is an array referenced by the unique identi�er

of a child. The values in the array are the Control Process Info objects

representing these control processes.

� appropriateness: The likelihood of this control process to change from

being a child, to being a coordinator, or vice-versa. This value is one

of the following: APPROPRIATE, NEUTRAL, INAPPROPRIATE, or

NO CHANGE.

� appropriatenessTimers: The bounds of the timer values for di�erent ap-
propriateness states. These are determined from

LOW STATE CHNG PARAM and
HIGH STATE CHNG PARAM using Table 2.4.

� averageGlobalPacketSize: The weighted average size (in bytes) of the
global control packets received by this control process. This information
is used for ow control of GCon messages.

� averageLocalPacketSize: The weighted average size (in bytes) of the local
control messages received by this control process. This information is
used for ow control of LCon and CCon messages.

2.3 Distribution Protocols

LCon messages are multicast with a TTL equal to coordTTL. This is the
smallest TTL with which a child may multicast messages without disrupting
the ow of control information in the hierarchy (as long as CCon messages

provide enough data). Higher TTLs are allowed, but are not recommended

because this results in unnecessary use of bandwidth. CCon messages are
multicast with a TTL equal to farTTL, this being the smallest TTL with which

all control processes in the local group are reachable from the coordinator.
GCon messages are multicast with a TTL equal to the system TTL, which is

de�ned by the user.

The ow control for the distribution of control information is a simpli�ed
version of that used in RTCP (see [53]). The time to wait before sending the

20 CHAPTER 2. CONTROL HIERARCHY

next message, called the intermission interval, is independently calculated at

each control process after every control message sent by that control process.

The intermission interval calculation is shown in Figure 2.2. The algorithm

for the calculation of the intermission interval is the same for local and global

control messages, but they are separate instances, using di�erent information

for determining their respective intermission intervals.

Control information is distributed through control messages. The pseudo-

code for the distribution of control messages is shown in Figure 2.3. Every

time the protocol receives a local control message from a control process rep-
resented in locals or from myCoordinator, it updates the averageLocalPacket-
Size, as shown in Figure 2.3. Every time the protocol receives a global control
message from a control process represented in coords, it updates the average-
GlobalPacketSize, as shown in Figure 2.3.

2.4 Distance Calculation

One of the objectives of exchanging control information is to calculate the
distance (latency) between control processes. This information is used for
the self-determination algorithms (Section 2.5), and in the reliable multicast
protocol (Chapter 3).

The distance data are distributed and that information is gathered to cal-
culate the distances to a subset of control processes in the system. This subset
is su�cient to approximate the distance to any control process in the system,
while using minimal resources to store this information. Each control process
maintains the distances to all of the other control processes in its local group

(in the locals variable) and to all of the control processes in the coordinator

group (in the coords variable). The formulas shown in Table 2.1 are used to
determine the approximate distance to any other control process.

The distances are calculated using a simpli�ed version of the NTP[40] al-

gorithm. Each control message includes a local timestamp, that records when

the message was sent. Let the control process sending a control message with a
local timestamp T3, be control process A, and let the control message, be msg.

When another control process receives a control message, it records its local
timestamp. Another control process B, receives the control message msg at

local time T4. In the message there is a Timestamp Pair representing control

2.4. DISTANCE CALCULATION 21

Computes the time until the next control packet should be sent.
Algorithm based on Appendix A.7 Computing the RTCP Transmission
Interval of RFC 1889.

Constants:
RTCP MIN TIME = 1

Minimum time between control packets from this site (in seconds).
RTCP SIZE GAIN = 1/16

Gain (smoothing constant) for the low-pass �lter that estimates the average control
packet size.

Parameters:
members the estimated number of group members; on the �rst call, this parameter

should have the value 1
controlBw the target control bandwidth, in bytes per second; we use a parameter

supplied to the hierarchy at startup
packetSize the size of the control packet just sent, in bytes
avgPacketSize estimator for control packet size; updated for the packet just sent,

and also updates for every control packet received
initial ag that is true for the �rst call upon startup

controlPacketInterval(int members, double controlBw, int packetSize,

int avgPacketSize, boolean initial)

The �rst call at application start-up uses half the min delay for quicker noti�cation. The

average control packet size is initialized to 128 bytes which is a conservative estimate.

if (initial)
rtcpMinTime = RTCP MIN TIME/2

avgPacketSize = 128
else

rtcpMinTime = RTCP MIN TIME

The e�ective number of sites times the average packet size is the total number of bytes

sent when each site sends a report. Dividing this by the e�ective bandwidth gives the time
interval over which those packets must be sent to meet the bandwidth target, with a

minimum enforced. In that time interval the protocol sends one report so this time is also
the average time between reports.

t = (avgPacketSize) � members / controlBw
if (t < rtcpMinTime)
t = rtcpMinTime

To avoid tra�c bursts from unintended synchronization with other sites, the protocol then
picks the actual next report interval as a random number uniformly distributed

between 0.5�t and 1.5�t.

return t � (Math.random() + 0.5)

Figure 2.2: Determining the inter-message interval.

22 CHAPTER 2. CONTROL HIERARCHY

Local send module:
avgLocalTime = controlPacketInterval(1, TARGET BANDWIDTH, 0, 0, true)
sleep(avgLocalTime)

loop
lastLocalPacketSize = 0
if (amChild = true)
msg = createLocalMessage()
send(msg)
lastLocalPacketSize = msg.length

if (amCoord = true)
msg = createCoordMessage()
send(msg)
lastLocalPacketSize = lastLocalPacketSize + msg.length

avgLocalPacketSize = avgLocalPacketSize +

(lastLocalPacketSize � avgLocalPacketSize) � RTCP SIZE GAIN

localSleepFor = controlPacketInterval(numLocal, TARGET BANDWIDTH,
lastLocalPacketSize, avgLocalPacketSize, false)

avgLocalTime = avgLocalTime + (localSleepFor� avgLocalTime) � RTCP SIZE GAIN

sleep(localSleepFor)

Global send module:

avgGlobalTime = controlPacketInterval(1, TARGET BANDWIDTH, 0, 0, true)
sleep(avgGlobalTime)

loop
msg = createGlobalMessage()

send(msg)
lastGlobalPacketSize = msg.length

avgGlobalPacketSize = avgGlobalPacketSize +
(lastGlobalPacketSize � avgGlobalPacketSize) � RTCP SIZE GAIN

globalSleepFor = controlPacketInterval(numCoord, TARGET BANDWIDTH,
lastGlobalPacketSize, avgGlobalPacketSize, false)

avgGlobalTime = avgGlobalTime + (globalSleepFor � avgGlobalTime) � RTCP SIZE GAIN

sleep(globalSleepFor)

Figure 2.3: Pseudocode for the distribution of control messages.

q is a child q is a coordinator

p is a child dist(p; coordp)+ dist(p; coordp)+
dist(coordp; coordq) dist(coordp; q)

p is a coordinator dist(p; coordq) dist(p; q)

coordx is the coordinator associated with control process x
dist(x; y) is the distance from control process x to control process y

Table 2.1: Distance calculation

2.5. SELF-DETERMINATION PROTOCOL 23

process B (T1,T2). Thus, upon receiving msg, control process B can calculate

the one-way distance to control process A as:

distance = (T4� T3 + T2� T1)=2

This calculation of the distance assumes symmetric paths (which is not always

the case), but it does not assume synchronized clocks.

Children exchange distance information with control processes in their local

group through LCon messages. Coordinators exchange distance information

with control processes in their local group via CCon messages, and with the
other coordinators through GCon messages. As mentioned earlier, CCon mes-
sages include more information than the Timestamp Pairs. They include (1)

the distances from this coordinator to all other coordinators, which helps the
children determine distances to the control processes outside their local group,
and (2) the distances from this coordinator to all of the control processes in
this local group, which allow a child to estimate the distance to control pro-
cesses in its local group with which it cannot communicate directly (due to

TTL restrictions).

2.5 Self-Determination Protocol

The self-determination protocol is used to determine whether a control process
in the hierarchy should change states (either from being a child to being a

coordinator or vice versa). The determination of a state change is a purely
local decision based entirely on the control information gathered up to the time
the protocol is executed, and on a prede�ned set of rules adapted from [54].

The protocol for self-determination follows a set of nested rules. First, an
appropriateness value for changing states is determined from the rules pre-

sented in Table 2.2. This value is stored in the appropriateness variable at the

control process.

Based on the appropriateness determined by the protocol, another set of
rules (shown in Table 2.3) is consulted to determine whether to continue.

If the conditions are satis�ed and the protocol decides to continue, a ran-
domized timer is set. This timer is based on the appropriateness of the

change and is chosen from an interval shown in Table 2.4. The constants

24 CHAPTER 2. CONTROL HIERARCHY

Appropriateness Coordinator Child

NO CHANGE numCoords < THL

APPROPRIATE numLocals = 0 and numLocals > LTS

close to another coordinator and far from my coordinator

NEUTRAL numLocals < LTS numLocals � LTS

and close to another coordinator and far from my coordinator

INAPPROPRIATE All other cases All other cases

THL = LOW THRESH COORD SIZE

LTS = LOCAL TARGET SIZE

Table 2.2: Evaluating Appropriateness.

Appropriateness Coordinator Child

APPROPRIATE always always

NEUTRAL numCoords > (THL + 3 � THH) = 4 numCoords < (3 � THL + THH) = 4

INAPPROPRIATE numCoords > THH numCoords < THL

THL = LOW THRESH COORD SIZE

THH = HIGH THRESH COORD SIZE

Table 2.3: Conditions for determining whether the state change should occur. The
change continues if these conditions are satis�ed.

LOW STATE CHNG PARAM and HIGH STATE CHNG PARAM are set at
the start of the protocol by the application.

Once the timer expires, a coordinator checks whether one of the following
events has occurred during the waiting period: (1) a new child has contacted
this control process asking this control process to be its coordinator, (2) this
control process has sent a response to such a request, or (3) a child has been

added to this control process's local group. If any of these events has oc-

curred, the coordinator aborts the state change. Otherwise, it rechecks the
rules in Table 2.3. If those conditions are still satis�ed, it noti�es the hierar-
chy maintenance protocol (Section 2.6) to start the state change to becoming

a child.

A child, upon the expiration of the timer, rechecks the rules in Table 2.3.

If those conditions are still satis�ed, it noti�es the hierarchy maintenance

protocol (Section 2.6) to start the state change to become a coordinator.

This protocol is executed periodically. It is prevented from executing only

when the hierarchy maintenance protocol is in the middle of a state change.

2.6. HIERARCHY MAINTENANCE 25

Appropriateness Interval for Timer

APPROPRIATE [S1, S2]

NEUTRAL [S1 + S2, S1 + 2 � S2]

INAPPROPRIATE [S1 + 2 � S2, S1 + 3 � S2]

S1 = LOW STATE CHNG PARAM

S2 = HIGH STATE CHNG PARAM

Table 2.4: Timers based on appropriateness values.

2.6 Hierarchy Maintenance

First, we describe how a control process joins the hierarchy, i.e., the initializa-
tion of a control process. Next, we show the states a control process may be
in, and the transitions between states. Finally, we present the fault detection

and handling mechanisms of each control process in the hierarchy.

2.6.1 Initialization of a Control Process

A control process, upon startup, checks to see how many coordinators are

present in the hierarchy, by checking the messages sent in the coordinator
group. 2 If the number of coordinators is less than or equal to
(LOW THRESH COORD SIZE + HIGH THRESH COORD SIZE)=2 or the
control process does not receive a GCon message within a given time, the
control process decides to start up as a coordinator. Otherwise, the control

process decides to start up as a child. The average of the coordinator group
size threshold parameters is used for the initial decision, because such a cal-
culation can be made quickly (from only one GCon message), and gives room
for error if many control processes join simultaneously.

A control process, starting up as a coordinator, starts sending GCon mes-

sages and accepting requests in order to be the coordinator for the control

processes. Once these mechanisms are initialized, the control process is con-
sidered to be in the coordinator group, and enters the COORDINATOR state.

A control process starting up as a child, needs to �nd a coordinator that
will accept it into its local group. This step is accomplished by using an

2Only one GCon message is necessary to make this determination.

26 CHAPTER 2. CONTROL HIERARCHY

expanding ring search. When it �nds a coordinator, the control process starts

sending LCon messages to the coordinator's local group. By sending LCon

messages to the local group, the control process becomes a child in the group,

and enters the CHILD state. If the expanding ring search doesn't provide a

coordinator within a given time, the control process starts up as a coordinator,

instead.

2.6.2 State Transitions

A control process may be in one of four states: COORDINATOR,

TO COORDINATOR, CHILD, or TO CHILD. Each control process is nor-
mally in the COORDINATOR or CHILD state.

The transition from the COORDINATOR state to the TO CHILD state is

made when the self-determination protocol determines that this control process
should leave the coordinator group. In this state, the control process (1)
attempts to �nd a coordinator, whose local group it can join, and (2) waits for
all the children in its local group to leave that local group. Once both of these
tasks are accomplished, it transitions to the CHILD state. The pseudocode for

this control process, while it is in the TO CHILD state, is shown in Figure 2.4.

The transition from the CHILD to the TO COORDINATOR state is started
when the self-determination protocol decides that the control process should
become a coordinator. On entering this state, the control process joins the

coordinator group (by starting the sending of GCon messages) and leaves its
local group (by stopping the sending of LCon messages). Once this occurs, it
transitions to the COORDINATOR state.

During the two transitional states (TO CHILD and TO COORDINATOR)

the control process may be both a coordinator and a child. This duality is

permitted, so that the ow of control information may continue uninterrupted
during these states. In the TO CHILD state, the control process stops being

a coordinator once all of the children in its local group leave that group.

Thus, when it transitions to the CHILD state, it is only a child. However,

when the control process transitions from the TO COORDINATOR state to

the COORDINATOR state, it is no longer a child locally, but other control
processes in the system may think of it as still being both. The fault detection

and handling protocol (Section 2.6.3) eventually removes the control process

2.6. HIERARCHY MAINTENANCE 27

TO CHILD state processing:
stop allowing new children
if (any control processes in coords are in locals OR

myID is the only one in coords)
allow new children
return to COORDINATOR state

send Ring Query messages using an expanding ring search
start sending Coordinator Leave messages to my local group
loop

if (ring search has failed)
allow new children
stop sending Coordinator Leave messages to my local group
return to COORDINATOR state

if (received a Search Response message)
join the senders local group

iLeft = true

if (all of the children in my local group have left)
stop sending Coordinator Leave messages to my local group

localLeft = true

if (iLeft AND localLeft)

go to CHILD state

When a child receives a Coordinator Leave message it attempts to �nd
another coordinator.

Figure 2.4: Pseudocode for TO CHILD state.

from the local group in which it was a child.

2.6.3 Fault Detection and Handling

The detection of control process failures is accomplished via an algorithm

that runs periodically. If the information from a control process has not been
updated recently, the control process is removed from the data structures

and thus removed from this control process's view of the membership of the

hierarchy.

Any time a Control Process Info object is updated, the lastUpdated �eld

is updated with the current time. A Control Process Info object representing

control process processID is updated: (1) during the processing of a control

message from the control process identi�ed by processID, (2) if an entry for

that control process is contained in the localDistances �eld of a CCon message,
or (3) if an entry for that control process is contained in the coordDistances
�eld of a CCon message.

28 CHAPTER 2. CONTROL HIERARCHY

The detection algorithm checks the lastUpdated �eld for every Control Pro-

cessInfo object in the locals and coords variables. For each control process, if

that �eld has not been updated within a given time interval, the Control Pro-

cess Info object is removed from the appropriate variable.

Chapter 3

Reliable Multicast

Reliable multicast is an essential part of any group communication system.

For the InterGroup systems we have designed a reliable multicast that is an
adaptation of SRM[23]. The reliable multicast service provides a means to
recover messages, without enforcing any particular delivery order. The recov-
ery of messages is accomplished via retransmission requests (Section 3.3) and
retransmitted data (Section 3.4) Thus, detection of losses and the ordering of

messages is relegated to the process group delivery mechanisms explained in
Chapter 4.

For the InterGroup system, we do not assume in�nite bu�ers, thus the
reliable multicast is also in charge of bu�er management. This part of the

reliable multicast is presented in Section 3.5.

3.1 Model

We consider an asynchronous distributed system consisting of n processes

p1; p2; : : : ; pn that communicate via messages over a network. Each process

within the system is represented by a unique identi�er. The system is asyn-
chronous in that no bound can be placed on the time required for a computa-

tion or for communication of a message. Processes have access to local clocks
on their processor. These clocks are not synchronized.

Each process has access to a control process in the control hierarchy (Chap-

ter 2). During the lifetime of a process, it may associate itself with one and

29

30 CHAPTER 3. RELIABLE MULTICAST

only one control process in the control hierarchy. A process communicates

with its associated node using a reliable FIFO communication channel.

Processes multicastmessages to the other processes in the group. A process

receives all of its own multicast messages. Communication between processes

is unreliable and, thus, messages may be lost or arbitrarily delayed. Com-

munication channels are not assumed to be FIFO. The network is allowed to

partition and remerge.

3.2 Data Structures

3.2.1 Messages

The reliable multicast protocols use several di�erent types of messages.

Retransmission Request Ticket

A retransmission request ticket (RTRTicket) contains the information that is
necessary to identify a message uniquely and to recover a missing message.
In the InterGroup system, a message is uniquely identi�ed by the identi�er of

the process that sent the message1 process and the sequence number that the
sending process assigned to it. An RTRTicket contains the following �elds:

� sender: The process identi�er of the sender of the missing message.

� coordinator: The identi�er of the control process that is the coordinator
associated with the sender. This �eld is required for estimating the
distance to the sender of the missing message (see Section 2.4).

� seq: The sequence number of the missing message.

Retransmission Request Message

A retransmission request (RTR) message is used to request the retransmission

of a message from the process group. It contains the following �elds:

1The identi�er of a process consists of an the IP address of the machine that the process
is running on and a number. The number is assigned to the process, such that no other
process running on the same machine has the same number.

3.2. DATA STRUCTURES 31

� type: RTR

� senderID: The process identi�er of the sender.

� coordinator: The identi�er of the control process that is the coordinator

associated with the sender. This �eld is required for estimating the

distance to the sender of the missing message (see Section 2.4).

� ticket: The RTRTicket describing the missing message.

Retransmitted Message

A retransmitted (RTX) message is used for retransmitting a message to the
process group. It contains the following �elds:

� type: RTX

� senderID: The process identi�er of the sender.

� origMsg: The original message as it was �rst sent to the process group.

3.2.2 Internal Variables

The following constants are used in the reliable multicast protocols:

� AVG DUP REQ: Threshold for the number of average duplicate retrans-

mission requests received. In the prototype implementation this value is
set to 1.

� AVG REQ DELAY: Threshold for the average delay in sending a re-

transmission request. In the prototype implementation this value is set

to 1.

� AVG RTX DELAY: Threshold for the average delay in sending a re-
transmission. In the prototype implementation this value is set to 1.

� �: Parameter for calculating an exponential-weighted moving average. 2

In the prototype implementation this value is set to 0.25.

2avg = (1� �) � avg + � � lastV alue

32 CHAPTER 3. RELIABLE MULTICAST

� �: Parameter for modifying threshold constants by a small amount in

some calculations. In the prototype implementation this value is set to

0.1.

The reliable multicast protocol uses the following variables:

� lowReqParam: The low-end request timer parameter. The request timer

is used in determining how long the protocol should wait between receiv-

ing a noti�cation of a missing message and sending an RTR message in

response. This variable is initialized to 2, and constrained to the range
[0.5, 2].

� highReqParam: The high-end request timer parameter. This variable is

initialized to 2, and constrained to the range [1, 100].

� lowRtxParam: The low-end retransmission timer parameter. The re-
transmission timer is used in determining how long to wait between
receiving an RTR message and sending an RTX message. This variable
is initialized to 10, and constrained to the range [0.5, 10].

� highRtxParam: The high-end retransmission timer parameter. This vari-

able is initialized to 10, and constrained to the range [1, 100].

� avgDupReq: The exponentially weighted moving average of the number
of duplicate retransmission requests received during a period. This pe-
riod is de�ned as the interval between a message loss noti�cation and the
completion of processing for that loss (either by sending a retransmission

request or by the noti�cation of the cancellation of processing for that

loss) or of two successive message loss noti�cations.

� avgReqDelay: The exponentially weighted moving average of the dura-
tion of processing a message loss noti�cation.

� avgRtxDelay: The exponentially weighted moving average of the dura-
tion of processing a retransmission request.

� msgBu�er: A collection of messages that this process has recently re-
ceived.

3.3. RETRANSMISSION REQUESTS 33

� stableTime: Timestamp. Messages that were sent with a timestamp

smaller than this variable do not need to be stored in the msgBu�er.

3.3 Retransmission Requests

Noti�cation of a missing message is an event triggered externally. Upon re-

ceiving a noti�cation, the protocol schedules a retransmission request. The

scheduling uses random timeouts to suppress requests from multiple processes

sharing a loss. The remainder of this section considers events that occur be-
tween the noti�cation of a missing message, and the successful sending or
cancellation of sending a retransmission request to the system.

The noti�cation of a missing message is represented by a RTR Ticket. The
scheduling timeout is randomly chosen from an interval, which is a function

of this process's estimated distance to the sender of the missing message. The
timeout is thus chosen from the uniform distribution

3i � [lowReqParam � dS; (lowReqParam+ highReqParam) � dS]

seconds, where dS is the estimated distance from this process to the con-
trol process or coordinator associated with the sender of the missing message,
obtained from the control hierarchy. The variables lowReqParam and highRe-

qParam are adjustable via an adaptive algorithm and are discussed in more
detail in [23] (where they are referred to as C1 and C2). The parameter i is the

number of times the timeout calculation has been performed for the missing
message. The parameter i is set to 0 in the �rst timeout calculation.

If the process receives a retransmission request for a message for which it

has scheduled a timer, it performs a random exponential back-o�. It recalcu-
lates the timeout with the parameter i incremented by 1 and reset the timer

to the new timeout.

The protocol uses an adaptive algorithm to adjust the timer parameters
lowReqParam and highReqParam in response to the past behavior of the reli-

able multicast protocol. Figure 3.1 shows the adaptive adjustment algorithm
used to adjust these parameters.

34 CHAPTER 3. RELIABLE MULTICAST

After sending a request:
avgReqDelay = (1 - �)*avgReqDelay +

�*(time it took last request)
lowReqParam = lowReqParam - 0.05

Before each new request timer is set:
avgDupReq = (1 - �)*avgDupReq +

�*(number of duplicate requests during the last period)
if (avgReqDelay � AVG REQ DELAY)
lowReqParam = lowReqParam - 0.05
if (avgDupReq < (AVG DUP REQ - �)
highReqParam = highReqParam - 0.1

else if (avgDupReq � AVG DUP REQ)
highReqParam = highReqParam + 0.5
if (avgReqDelay < (AVG REQ DELAY - �))

lowReqParam = lowReqParam + 0.05
else if (avgDupReq < (AVG DUP REQ - �) AND

avgReqDelay < (AVG REQ DELAY - �))

highReqParam = highReqParam - 0.1

Figure 3.1: Dynamic adjustment algorithm for the request timer parameters.

3.4 Retransmission of Data

A process that receives a retransmission request checks its msgBu�er for the
message identi�ed in the retransmission request. If that message appears in
the msgBu�er, the process can ful�ll the retransmission request.

If a process can ful�ll a retransmission request, it schedules the sending of
the message that is to be retransmitted. The timeout used for the scheduling
is chosen from the uniform distribution

[lowRtxParam � dR; (lowRtxParam+ highRtxParam) � dR],

where dR is the estimated distance from this process to the control process or
coordinator associated with the sender of the retransmission request, obtained

from the control hierarchy. The variables lowRtxParam and highRtxParam are
adjustable via an adaptive algorithm and are discussed in more detail in [23]

(where they are referred to as D1 and D2). The algorithm is used to adjust the
timer parameters lowRtxParam and highRtxParam in response to the past

behavior of the reliable multicast protocols. Figure 3.2 shows the adaptive

adjustment algorithm used to adjust these parameters.

If a process that has scheduled the retransmission of a message receives a

3.5. BUFFER MANAGEMENT 35

After sending a retransmission:
avgRtxDelay = (1 - �)*avgRtxDelay +

�*(time it took last retransmission)
lowRtxParam = lowRtxParam - 0.05

After the cancellation of a retransmission:
avgRtxDelay = (1 - �)*avgRtxDelay +

�*(time it took last retransmission)
if (avgRtxDelay � AVG RTX DELAY)
highRtxParam = highRtxParam - 0.05

else
highRtxParam = highRtxParam + 0.1

Before each new request timer is set:
if (avgRtxDelay � AVG RTX DELAY)

lowRtxParam = lowRtxParam - 0.05
else if (avgRtxDelay < (AVG RTX DELAY - �))
lowRtxParam = lowRtxParam + 0.05

Figure 3.2: Dynamic adjustment algorithm for the repair timer parameters.

retransmission of that message from another process, then this process cancels
the timer and does not send the message. Otherwise, when the timer expires,

the process sends the retransmission of the message.

3.5 Bu�er Management

The msgBu�er is used to store messages, so that they can be retransmitted
if necessary. To keep the msgBu�er size managable, we need to determine
when a message will no longer be requested for retransmission. A message will
no longer be requested for retransmission if that message has been received

by every process. Such messages are referred to as stable messages. A stable

message may be removed from the msgBu�er. We provide a protocol that

determines message stability for bu�er management.

The message stability protocol is based on the protocol in [10], that uses

a timestamp acknowledgment mechanism for stability determination. Each

process keeps track of the timestamp of the most recent \relevant" message

delivered to the application. Every process determines what \relevant" means
depending on its delivery guarantees and whether it is sending data messages.
The only restriction is that the timestamp must not be larger than the times-

36 CHAPTER 3. RELIABLE MULTICAST

tamp of the next message to be delivered that was sent by that process. This

value is periodically communicated to the control process associated with the

process.

The control process gathers the timestamps from all of the processes asso-

ciated with it, and chooses the smallest one to be that control process's local

acknowledgment. Children send their local acknowledgments in the data por-

tions of LCon messages. Coordinators gather the local acknowledgments from

all of the control processes in their local group, and choose the smallest one to

be the group acknowledgment. The group acknowledgment information is sent
in the data portions of GCon messages. The coordinators gather the group
acknowledgments from all of the control processes in the coordinator group,
and choose the smallest one to be the system acknowledgment. The system
acknowledgment is sent in the data portion of CCon messages. A control

process receives the system acknowledgment from its coordinator and reports
that value to the processes associated with it. All messages with timestamps
smaller than the system acknowledgment are marked as stable and removed
from the msgBu�er.

Chapter 4

Data Transmission and Delivery

In traditional group communication systems the delivery of messages from a
process group to the application, is determined system-wide by the individual
senders, or on a per message basis at a sender. Thus, every process must

provide the same delivery guarantees to the application.
In the InterGroup system, the delivery of messages from a process group is

determined by the application, at the receiving end. Each process may choose
a di�erent delivery guarantee. The InterGroup system currently provides the
following delivery guarantees within a process group:

� Unreliable unordered. Messages received from the process group are
delivered without delay for ordering or reliability to the application.
Some messages might never be delivered and multiple copies of the same
message might be delivered. Moreover, there is no guarantee on the
order in which messages are delivered. The underlying communication

network, IP Multicast, provides this same\best-e�ort" delivery service.

� Reliable source ordered. This service guarantees that all messages

from a particular message sender will be delivered to the application
(unless a process failure occurs) and they will be delivered in sequence
number order for each of these sources. This service is similar to TCP/IP

and is well suited to multicast �le transfers and many applications cur-

rently using TCP/IP [15].

� Reliable group timestamp ordered. Messages are delivered to the

37

38 CHAPTER 4. DATA TRANSMISSION AND DELIVERY

application in timestamp order over the entire process group. A mem-

bership service ensures that the delivery of messages to the application

obeys virtual synchrony. This service is closest to the idea of agreed

messages in group communication systems.

In this chapter, we �rst outline the assumptions made in order to create the

data transmission and delivery component (Section 4.1). Then, we present the

data structures used (Section 4.2). A variation of a Lamport clock is presented

next (Section 4.3). Then, we present the impact of message stability on the
InterGroup protocols (Section 4.4). The data transmission algorithms are

presented next (Section 4.5). Then, we present the ordering and delivery
algorithms used by the di�erent services o�ered by the InterGroup protocols
(Sections 4.6 - 4.8). Finally, we discuss other delivery guarantees that might
be added to the system in the future (Section 4.9).

4.1 Model

We consider an asynchronous distributed system consisting of n processes

p1; p2; : : : ; pn that communicate via messages over a network. Each process
within the system has a unique identi�er. The system is asynchronous in
that no bound can be placed on the time required for a computation or for
communication of a message. Processes have access to Lamport clocks.

The system consists of m process groups g1; g2; : : : ; gm. Each process group

gi consists of li processes q1; q2; : : : ; qli that communicate via messages over

a network. Each process within the system may belong to multiple process
groups. Each process group is uniquely mapped to an IP multicast group.1

The rest of the discussion is restricted to a single process group.

A view is de�ned as in Chapter 1. A view is uniquely identi�ed by its

membership, and view identi�er. The membership consists of a set of process
identi�ers. The view identi�er, consists of three �elds:

� startTime: the logical time at which this view begins

1A process group is identi�ed by the IP address of the IP multicast group it is using to
communicate.

4.2. DATA STRUCTURES 39

� leader: the identi�er of a process chosen deterministically from the mem-

bership

� leaderSeq: the leader sequence number

The current view is the most recent view of the process group provided to the

application (i.e., the result of viewof(ti; p), where ti is the most recent event

and p is the process in question).

The process group comprises two disjoint groups: the sender group, which

consists of the processes that must obey the Sender Self Inclusion property
for the current view, and the receiver group which consists of all the other
processes in the group. Each process in the process group is in only one of

these groups at a time.

The rest of the discussion is restricted to a single view. Thus, the mem-
bership is static.

Only processes that are in the sender group multicast messages to the
other processes. A process receives all of its own multicast messages. Com-
munication between processes is unreliable and, thus, messages may be lost or

arbitrarily delayed. Communication channels are not assumed to be FIFO.

4.2 Data Structures

The data transmission and delivery protocols employ three message types:
Data messages, Keep Alive (KA) messages, and Application Data messages.
We discuss these below.

4.2.1 Data Message

Data messages are used for exchanging application messages. A Data message
contains a Data message header, and a byte array containing an application

message. The following �elds are contained in a Data message header:

� type: The message type of this message.

� sender: The unique identi�er of the process that sent this message.

40 CHAPTER 4. DATA TRANSMISSION AND DELIVERY

� coord: The unique identi�er of the coordinator that was associated with

the process that sent this message at the time this message was sent.

This �eld is necessary, because we need to keep track of the coordinator

associated with each process for use by the retransmission mechanisms.

� seq: The sequence number of this message. If another message from this

sender has the same value of this �eld, that message must be identical

to this one or a Keep Alive message. This �eld is used to detect message

loss and allow FIFO ordering for messages from individual processes.

� timestamp: The timestamp of this message. This �eld is used to deter-

mine a process group wide ordering of messages.

The Data message header �elds allow the protocols to satisfy the most
stringent guarantees o�ered by the InterGroup protocols.

4.2.2 Keep Alive Message

Keep Alive (KA) messages are used by the protocols to help to detect lost
messages, to ensure progress in the delivery of messages, and to help maintain
liveness. They contain the �elds of a Data message header.

4.2.3 Application Data Message

Application Data messages are used for the delivery of data messages to the

application. The following �elds are contained in an Application Data message:

� type: APP DATA.

� sender: The unique identi�er of the process that sent this message.

� pg: The unique identi�er of the process group to which this message
belongs.

� data: A byte array containing the application message.

4.3. A VARIATION OF LAMPORT TIME 41

4.3 A Variation of Lamport Time

All of the processes in the process group keep a local reference of the system

time. This reference is based on a Lamport clock [37], and used to preserve

the causality between messages. This algorithm is actually a modi�cation of

the Lamport time algorithm. It updates the Lamport time to match the local

processor time whenever the Lamport time lags behind the local time. The

local processor time is used as an e�ciency. It allows the time value to increase

in the absence of messages, providing a tighter synchronization mechanism for

the clocks, and thus leading to lower delivery latencies for the reliable group
timestamp ordered delivery service.

4.4 Determining Message Stability

To ensure that messages are available for retransmission to the processes of a
process group, every process in the sender group must bu�er a message it has
sent until that message becomes stable. A process determines that a message is
locally stable if the InterGroup protocols have �nished processing the message

at that process. A message becomes stable in the process group when every
process in the process group has determined that the message is locally stable.
A process will make the determination of local stability based on the delivery
guarantee it chooses. Each process, periodically sends this information via the
control hierarchy, where this information is distributed and the group stability

is calculated.

4.5 Data Transmission

Processes in the sender group, multicastmessages to the group. In this section,

we discuss the algorithms for the transmission of data and the contents of the
messages used by the protocol. First, we discuss the internal variables used.

4.5.1 Internal Variables

The transmission algorithms use the following variables:

42 CHAPTER 4. DATA TRANSMISSION AND DELIVERY

� myID: The process identi�er of this process.

� coord: The coordinator2 associated with this process.

� seq: The sequence number of the last Data message sent.

� time: The current Lamport time.

4.5.2 Data Transmission Algorithms

The data transmission algorithms are quite simple. First, the Keep Alive timer
is set. The process then waits for an event. The two possible events are: (1)
reception of a message from the application, and (2) the expiration of the
timer. If a message is received from the application, then the seq variable is
incremented, a Data message including the application message is sent to the

group, the timer is reset and the process waits for the next event. The header
of the Data message is �lled with the information from the internal variables
previous to sending.

If the timer expires, a Keep Alive message is sent to the group, the timer
is then reset and the process waits for the next event. The header of the Keep
Alive message is contains the information from the internal variables previous

to the message being sent.

4.5.3 Flow Control and Congestion Avoidance

The InterGroup system uses an adaptation of the Real Time Control Protocol

(RTCP) ow control algorithms. We use the RTCP algorithm for calculating

the time to wait until we send the next message. However, we vary the band-
width parameter used in the calculation, depending on the message losses in

the system. The bandwidth parameter is slowly increased while no losses are
reported. Losses in the InterGroup system are reported using RTRMessages.

When a process receives an RTRMessage, it reduces the bandwidth parameter,
thus reducing the amount of tra�c that the process attempts to send to the

group.

2see Chapter 2 for de�nition

4.6. UNRELIABLE UNORDERED DELIVERY 43

We also add a wrapper around the RTCP algorithm that checks to see

if the process has too many outstanding messages. If that is the case, the

process sends Keep Alive messages until the number of outstanding messages

falls below a threshold. This is the fallback feedback mechanism in our ow

control. If a process does not manage to receive RTRMessages which signal it

to slow down its sending, this mechanism abruptly stops sending new messages

until the system stabilizes.

This approach is conservative. We have not tried to optimize the ow

control mechanisms. The topic of ow control is still an open research topic
and is not the focus of this dissertation.

4.6 Unreliable Unordered Delivery

The unreliable unordered (UU) delivery service provides the delivery services

of IP multicast, i.e., \best-e�ort" delivery. The InterGroup protocols receive
messages via IP multicast. Upon reception, all Data messages are delivered to
the application and all other messages (including Retransmittedmessages3) are
discarded. When this delivery service is chosen, the protocol makes no e�ort
to order messages or to recover lost messages. The messages are delivered to

the application without delay for ordering or reliability.

Applications receiving messages using the UU delivery service, may suf-
fer additional overhead, when compared to the delivery service o�ered by IP
multicast. This is due to two factors. First, every message sent using the Inter-
Group protocols is converted to a Data message before sending. Thus, there is

an additional header associated with the message, increasing bandwidth usage

and additional latency in creating the Data message. Second, prior to delivery
to the application, the message is converted to an Application Data message,

which incurs additional latency.

Due to the nature of this service, messages do not need to be bu�ered at

the receiver. However, as an e�ciency, the protocol may bu�er Data messages
locally at the receiver to satisfy retransmission requests.

3See Chapter 3 for de�nition.

44 CHAPTER 4. DATA TRANSMISSION AND DELIVERY

4.7 Reliable Source Ordered Delivery

This service guarantees that all messages from a source will be delivered to the

application (unless a process failure occurs at the source) in sequence number

order, provided that the source is in the membership of the current view at the

receiver. This service is similar to TCP/IP and, thus, well-suited to multicast

�le transfers and many applications currently using TCP/IP.

4.7.1 Setup

An application speci�es a source to activate this service. The receiver and

source then have to determine the starting point of the service. First, the
receiver adds this source to its local stability reports. This step prevents
new messages from becoming stable in this process group until the receiver
successfully activates the service. The protocol then performs a handshake
with the source. Through the handshake, the source provides the receiver

with an initial membership view and the sequence number of the �rst message
to be delivered from the source. The view is delivered to the application and
thus the source becomes an active source and the sequence number becomes the
activation point for this source. If the handshake protocol is unsuccessful, the
source is removed from the receiver's local stability reports, and the protocol

noti�es the application that the service is currently unavailable.

A user may choose more than one source for this delivery service. If mul-

tiple sources are chosen, there is no guarantee on the interleaving of message
delivery across the sources.

4.7.2 Ordering and Delivery

The �rst message delivered to the application is the message from the source
whose sequence number matches the activation point. The ordering and de-

livery algorithms for this service deliver the messages from this source, with
sequence numbers greater than the activation point in FIFO order, as long as

the source is a member of the view installed at this process.

Because the underlying communication network may lose messages, an
algorithm is provided to detect missing messages (Figure 4.1). The algorithm

4.7. RELIABLE SOURCE ORDERED DELIVERY 45

constants:
activationPoint[source] - the sequence number of the �rst message

delivered to the application from the process
indexed by source

variables:
highSeq[source] - the largest sequence number received from

the process indexed by source

algorithm:
receive message msg

if (msg.sender is an active source)
if (msg.type = KEEP ALIV E)
if (msg.seq > highSeq[msg.sender])
request retransmission of messages with sequence numbers

(highSeq, seq] for msg.sender

else
if (msg.seq - 1 > highSeq[msg.sender])
request retransmission of messages with sequence numbers

(highSeq, seq) from msg.sender

Figure 4.1: Algorithm for detecting missing messages.

detects missing messages by looking for gaps in the sequence numbers of the
messages received from this source. Keep Alive messages are used to aid in
loss detection. The sequence number of a Keep Alive message is equal to

the sequence number of the most recent Data message sent by the source.

Thus, Keep Alive messages allow us to determine the loss of the most recent
Data message sent by the source. When a message loss is detected, a request
for the retransmission of the missing message is sent to the reliable multicast

component.

The algorithm in Figure 4.2 shows the ordering and delivery process for

this service.

46 CHAPTER 4. DATA TRANSMISSION AND DELIVERY

constants:
activationPoint[source] - the sequence number of the �rst message

delivered to the application from the process
indexed by source

variables:
highSeq[source] - the largest sequence number received from

the process, indexed by source
lastSeq[source] - the largest sequence number delivered from

the process, indexed by source

initialization:
lastSeq[source] = activationPoint[source]

algorithm:
receive message msg

if (msg.type = DATA)
if have not received a data message denoted by (msg.sender, msg.seq)
if (msg.sender is an active source)
if (msg.seq = lastSeq[msg.sender] + 1)
updateAndDeliver(msg)
while (have stored message (msg) with msg.seq = lastSeq[msg.sender] + 1)
updateAndDeliver(msg)

else
store msg

if (msg.seq > highSeq[source])
highSeq[msg.sender] = msg.seq

else
store msg

if (msg.seq > highSeq[source])
highSeq[msg.sender] = msg.seq

updateAndDeliver(msg):
lastSeq[msg.sender]++
if (highSeq[msg.sender] < msg.seq)
highSeq[msg.sender] = msg.seq

deliver msg

Figure 4.2: Algorithm for ordering and delivering messages for the reliable source
ordered message delivery service.

4.8. RELIABLE GROUP TIMESTAMP ORDERED DELIVERY 47

4.8 Reliable Group Timestamp Ordered De-

livery

This service guarantees that messages are reliably delivered to the application

in timestamp order across the sender group membership of the current view.

Furthermore, it guarantees that the messages are delivered in the same order

to all applications that have the same current view and have requested the

same delivery service.

At the start of a view, the protocol sets the activation point for each
process in the membership of that view. Only messages after the activation
point for each process are considered for delivery. These activation points are
determined by the membership protocols (see Chapter 5). For this service,

messages are delivered from the members of the view in timestamp order.
The algorithm used to detect missing messages for this service is the same

as the algorithm for the reliable source ordered message delivery service (Fig-
ure 4.1).

The algorithms in Figures 4.3 and 4.4 show the ordering and delivery pro-

cess for this service. The messages are �rst ordered in sequence number order
for each source in the view (Figure 4.3). The algorithm that performs the
source ordering is similar to the one for the reliable source ordered message
delivery service. However, the timestamp ordering algorithm delivers a mes-
sage to the application only if a message from each of the processes in the

membership of the current view is currently stored in that ordering compo-
nent. To allow progress in the delivery of messages to the application in the
absence of Data Messages, the source ordering algorithm in Figure 4.3 also

processes Keep Alive messages. Keep Alive messages contain a timestamp
that is greater than the timestamp of the most recent Data message sent at a

source. Thus, if there are no Data messages available for delivery in the source
ordering algorithm, a Keep Alive message may be delivered to allow progress

of the timestamp ordering algorithm.
The algorithm in Figure 4.4 assumes that messages are received reliably

and in source order for all of the processes in the membership of the current

view. This is accomplished by the source ordering algorithm. A message is

delivered to the application only if a message from each of the processes in the

membership of the current view is currently stored in that ordering

48 CHAPTER 4. DATA TRANSMISSION AND DELIVERY

constants:
activationPoint[source] - the sequence number of the �rst message

delivered to the application from the process
indexed by source

variables:
highSeq[source] - the largest sequence number received from

the process, indexed by source
lastSeq[source] - the largest sequence number delivered from

the process, indexed by source
highTime[source] - the largest timestamp received from the

process, indexed by source

initialization:
lastSeq[source] = activationPoint[source]

algorithm:
receive message msg
if (msg.type = KEEP ALIV E)

if (msg.sender is an active source)
if (msg.seq > lastSeq[msg.sender])

if (highTime[msg.sender] < msg.timestamp)
highTime[msg.sender] = msg.timestamp

deliver msg
else if (msg.seq > lastSeq[msg.sender])
if have received a data message (dm) denoted by

(msg.sender, msg.seq)
if (dm.timestamp < msg.timestamp)

dm.timestamp = msg.timestamp

else if have not received a data message denoted by (msg.sender, msg.seq)

if (highTime[msg.sender] < msg.timestamp)
highTime[msg.sender] = msg.timestamp

if (msg.sender is an active source)
if (msg.seq = lastSeq[msg.sender] + 1)
updateAndDeliver(msg)

while (have stored message (msg) with msg.seq = lastSeq[msg.sender] + 1)
updateAndDeliver(msg)

else
store msg

if (msg.seq > highSeq[source])
highSeq[msg.sender] = msg.seq

else

store msg
if (msg.seq > highSeq[source])

highSeq[msg.sender] = msg.seq

updateAndDeliver(msg):
lastSeq[msg.sender]++
if (highSeq[msg.sender] < msg.seq)

highSeq[msg.sender] = msg.seq

deliver msg

Figure 4.3: Algorithm for source ordering messages for the reliable timestamp
group ordered message delivery service.

4.8. RELIABLE GROUP TIMESTAMP ORDERED DELIVERY 49

variables:
queue[source] - a FIFO queue, holding the messages that are

ready to be checked for delivery for the process
denoted by source

memb - a set containing the processes in the sender group of the
current con�guration

algorithm:
receive message msg

if (msg.type = KEEP ALIV E)
if (have stored a keep alive message (kam) denoted by (msg.sender, msg.seq))
if (msg.timestamp > kam.timestamp)
replace kam with msg

else
add msg to queue[msg.sender]

else
add msg to queue[msg.sender]

remove all KEEP ALIV E messages from the queue
loop
msgToDeliver.timestamp = 1

for (for all x 2 memb)
if (queue[x] is empty)
exit loop

tmpMsg = get next message from queue[x]

if (tmpMsg.timestamp < msgToDeliver.timestamp)
msgToDeliver = tmpMsg

else if (tmpMsg.timestamp = msgToDeliver.timestamp AND
tmpMsg.sender < msgToDeliver.sender)
msgToDeliver = tmpMsg

remove next message from queue[msgToDeliver.sender]

deliver msgToDeliver

end loop

Figure 4.4: Algorithm for ordering and delivering messages for the reliable group
timestamp ordered message delivery service.

50 CHAPTER 4. DATA TRANSMISSION AND DELIVERY

component. The message that is delivered is the one with the lowest times-

tamp. If more than one message carries the lowest timestamp, the algorithm

delivers the message, from this set, that is from the process with the lowest

process identi�er. If this message is a Keep Alive message, the algorithm

does not deliver it to the application.

4.9 Future Work

The InterGroup protocols are designed to allow for other delivery services. In
the future we plan to add the following delivery services:

� Unreliable source ordered. The messages are delivered to the ap-
plication in sequence number order for each source. Once a message
with sequence number seq, from source src, has been delivered to the
application any message with a lower sequence number, from source src
is discarded. This type of service is commonly used for video and au-

dio data. The Real Time Protocol (RTP)[53] provides a similar type of
service.

� Unreliable group timestamp ordered. Messages are delivered to
the application in timestamp order over the entire process group. This
type of service can be thought of as an extension of the unreliable source
ordered service. It may be used when synchronization of unreliable data
(e.g., video and audio) from di�erent sources is needed.

� ALF-enabled service. This service provides the application with the
ability to request the retransmission of a message it considers to be
missing. This service is based on application level framing (ALF) [17].

To implement this service in the InterGroup protocols, the headers of

the data message types would need to be changed, to allow for a scalable
naming structure as in [49].

Ordering across groups can also be implemented by building components on
top of the existing delivery services.

Chapter 5

Process Group Membership

The process group membership is used to maintain a valid view of the group
memberships and allow the delivery of messages to continue.

5.1 Model

We consider an asynchronous distributed system consisting of n processes
p1; p2; : : : ; pn that communicate via messages over a network. Each process

within the system has a unique identi�er. The system is asynchronous in
that no bound can be placed on the time required for a computation or for
communication of a message. Processes have access to Lamport clocks.

The system consists of m process groups g1; g2; : : : ; gm. Each process group
gi consists of l processes q1; q2; : : : ; ql that communicate via messages over a

network. Each process within the system may belong to multiple process
groups.

The rest of the discussion is restricted to a single process group.

A view is de�ned as in Chapter 1. A view is uniquely identi�ed by its
membership, and view identi�er. The membership consists of a set of process

identi�ers. The view identi�er consists of three �elds:

� timeEntered: the logical time at which this view begins

� leader: the identi�er of a process chosen deterministically from the mem-

bership

51

52 CHAPTER 5. PROCESS GROUP MEMBERSHIP

� leaderSeq: the leader sequence number

The current view is the most recent view of the process group provided to the

application (i.e., the result of viewof(ti; p), where ti is the time of the most

recent event and p is the process in question).

The process group comprises two disjoint groups: the sender group, which

consists of the processes that must obey the Sender Self Inclusion property

for the current view, and the receiver group which consists of all the other

processes in the group. Each process in the process group is in only one of

these groups at a time.
Only processes, that are in the sender group or that wish to join the sender

group, multicast messages to the other processes. Multicast messages are
assumed to be delivered to the membership protocols, reliably and in source

order.
The network is allowed to partition and remerge.
We assume all process have chosen the Reliable Group TimestampOrdered

delivery guarantee.

5.2 The Data Structures

The process group membership protocol employs a number of message types
to ensure that a valid membership view is executing. First, we introduce the
messages that are internal to a process, and are not sent out on the network.
Then, we discuss the data message type whose �elds are included in all reliable
messages sent over the network. Next, we present the network messages used
in the membership protocols. Finally, we discuss the internal data structures.

5.2.1 Internal Messages (Events)

Process Failure Message

Process Failure (PFailure) messages are used to signal the suspicion that a

process in the current view or proposed membership has failed. A PFailure
message contains the following �elds:

� type: PFailure

5.2. THE DATA STRUCTURES 53

� proc: The process identi�er of the process that is suspected to have failed.

Process Foreign Message

Process Foreign (PForeign) messages are used to signal the reception of a

message from a process outside the current view. A PForeign message contains

the following �elds:

� type: PForeign

� proc: The process identi�er of the process that is suspected not to be in

the current view.

To Sender Message

To Sender (ToSender) messages are used to signal that this process has decided
to enter the sender group. A ToSender message contains the following �elds:

� type: ToSender

To Receiver Message

To Receiver (ToRec) messages are used to signal that this process has decided
to exit the sender group. A ToRec message contains the following �elds:

� type: ToReceiver

User Membership Change Message

User Membership Change (UMC) messages are used to signal a view change to
the application. They are delivered to the application at the point in the data

stream when the view change occurs. A UMC message contains the following

�elds:

� type: UMC

54 CHAPTER 5. PROCESS GROUP MEMBERSHIP

� membID: The unique identi�er of the view whose beginning this message

signals.

� cut: The time at which this view begins.

� memb: The set of processes in the sender group of the view whose be-

ginning this message signals.

� transSet: The set of processes that were in the sender group of the

previous view, and are in the sender group of the view whose beginning

this message signals.

5.2.2 Network Messages

Membership Change Message

This message extends the Data message. Membership Change (MC) messages
signal that the new view should be installed. A MC message contains the
following �eld which is a constant:

� type = MC

The following �elds are added for a MC message:

� membID: The unique identi�er of the new view.

� procs: The set of all of the identi�ers of the processes that are in the
sender group of the new view.

� oldIDs: A set of identi�ers of all of the latest views of all processes in
procs.

� cutInfo: An array indexed by the identi�ers in oldIDs, whose values

represent the last message delivered in the view represented by the index.

� lastSeq: An array indexed by the identi�ers in procs, whose values rep-
resent the sequence number of the �rst message to be delivered from the

process represented by the index.

5.2. THE DATA STRUCTURES 55

Process Add Message

This message extends the Data message. Process Add (PAdd) messages are

used for voluntary joins to the sender group. They are sent by a process in

the sender group of the current view, on behalf of a process that wishes to

join the sender group. A PAdd message contains the following �eld which is a

constant:

� type = PAdd

The following �eld is added for a PAdd message:

� proc: The unique identi�er of the process that wishes to join the sender
group.

Process Leave Message

This message extends the Data message. Process Leave (PLeave) messages

are used for voluntary leaves from the sender group. A process that wishes to
leave the sender group, creates this message and sends it to the process group.
A PLeave message contains the following �eld which is a constant:

� type = PLeave

Process Join Message

This message extends the Data message. Process Join (PJoin) messages are

used to reach consensus on the processes that will be in the sender group of

the next view (proposed membership). A PJoin message contains the following

�eld which is a constant:

� type = PJoin

The following �elds are added for a PJoin message:

� membID: The unique identi�er of the current view at the message sender.

56 CHAPTER 5. PROCESS GROUP MEMBERSHIP

� procs: A set of identi�ers of the processes that, at the time this message

was sent, were being considered for the sender group of the next view at

the message sender.

� fail: A set of identi�ers of the processes that, at the time this message

was sent, were considered as having failed. This set is a subset of procs.

Process Failure Block Message

This message extends the Data message. Process Failure Block (PFailBlock)
messages are used to signal a suspicion that a process in the current view or

proposed membership has failed. These messages are generated if this process
is not able to receive a retransmission of a message for a speci�ed period of
time. A PFailBlock message contains the following �eld which is a constant:

� type = PFailBlock

The following �elds are added for a PFailBlock message:

� proc: The unique identi�er of the process that is suspected to have failed.

� procSeq: The sequence number of the message sent by proc that has not
been received.

Recovery Information Message

This message extends the Data message. Recovery Information (RecInfo) mes-
sages are used to distribute the information regarding the time when the view
change should occur. A RecInfo message contains the following �eld which is

a constant:

� type = RecInfo

The following �elds are added for a RecInfo message:

� membID: The unique identi�er of the current view.

� cut: The timestamp of the last message delivered to the user.

5.3. THE PROCESS GROUP MEMBERSHIP PROTOCOL 57

� seqCut: An array referenced by the unique identi�er of the processes in

the sender group of the current view that have been tagged as being

suspected of failing. The values in the array are the sequence numbers

of the last message that the sender of this message considers can be

delivered in reliable source order from each of these processes.

Ready To Commit Message

This message extends the Data message. Ready To Commit (RTC) messages
are used to signal that the sending process is ready to install the proposed

membership. A RTC message contains the following �eld which is a constant:

� type = RTC

The following �eld is added for a RTC message:

� �rstSeq: The sequence number of the �rst message to be delivered from
this process in the next view, if it is installed.

5.2.3 Internal Variables

The membership protocols use the following internal variables:

� state: The state of the membership protocol. These states are described

in Section 5.3.

� blockSet: The set of processes that are blocked from consideration for
further memberships. Processes are added to this set during an execu-

tion of the MRA. Processes are removed from this set after a certain

amount of time (this amount of time should be set to at least 100 times
the expected latency between the most distant processes in the group),

though they may not be removed while in the MRA state.

5.3 The Process Group Membership Protocol

The process group membership protocol is used to keep the processes in the

process group executing correctly and with consistent views of the membership

58 CHAPTER 5. PROCESS GROUP MEMBERSHIP

boundaries, despite changes in the membership (voluntary or not). We de-

scribe here the states of the membership protocol and the processing involved

to keep the process group executing. There are two states in the membership

protocol that may be considered as normal or stable. These are the Receiver

state and the Sender states. The process will always tend to one of these

states.

First, we describe how the membership protocol is initialized. After that,

we describe what occurs when a process is forced out of one of the stable

states. The protocols used in the case of faults in the process group (the
repair algorithms) are described in detail in Sections 5.4 and 5.5.

5.3.1 Bootstrap

The state machine for the initialization or bootstrap of the membership pro-
tocols is shown in Figure 5.1. When a process wishes to join a process group,

it must do so using the membership protocol, entering through the Bootstrap
state. A joining process may specify whether it wishes to join the sender group
directly, or whether it wishes to join the process group as a receiver. This is
speci�ed by an argument to the membership protocols and stored in the vari-
able initialState. The allowed values for intialState are SENDER (in case the
process wishes to join the sender group directly) and RECEIVER (otherwise).

The Bootstrap Receiver state is entered after the initialState variable is
initialized. A process's objective in this state is to obtain enough information
about the sender group of the current view, so that this process can join the
process group as a receiver. To obtain this information, the process must �rst
�nd a process that is a member of a sender group in this process group. This

step is accomplished by receiving messages addressed to the process group and
attempting to contact the senders of those messages. Once a process in the

sender group is contacted, the necessary information is obtained from that

process. This information consists of:

� The unique identi�er of the current view.

� The identi�ers of the process in the sender group of the current view.

� A sequence number for each process in the sender group of the current

view. This process will begin reliable delivery of messages for each of

5.3. THE PROCESS GROUP MEMBERSHIP PROTOCOL 59

Bootstrap

Bootstrap

Receiver

Bootstrap

Sender

initialized
the

in
itia

lS
ta

te

variable
could not find a sender to

sponsor my join of the

process group as a receiver

and initialState = SENDER

Receiver

Sender To Sender

su
cce

sfu
lly

jo
in

e
d

th
e

p
ro

ce
ss

g
ro

u
p

a
s

a
re

ce
ive

r

a
n
d

in
itia

lS
ta

te
=

R
E

C
E

IV
E

R

added to sender

membership

su
cc

e
ss

fu
lly

jo
in

e
d

th
e

se
n
d
e
r
g
ro

u
p

Membership

Repair Algorithm

(MRA)

s
u
c
c
e
s
s
fu

l
c
o
m

p
le

ti
o
n

o
f

th
e

M
R

A

received a PJoin, PFailu
re, PForeign or

PFailB
lock message fro

m
a process

that is
not in

the blockSet, or could
not

fin
d a sender to

sponsor my join
as a

sender

su
cc

es
fu

lly
jo

in
ed

th
e

pr
oc

es
s

gr
ou

p
as

a
re

ce
iv
er

an
d

in
it
ia

lS
ta

te
=

S
E
N
D
E
R

Figure 5.1: State machine for the initialization of the membership protocols.

these processes with the message that has a sequence number matching

this sequence number.

� The timestampat which this process will install the current view, i.e., this

process will deliver messages, after this timestamp, in the current view.

Once this process installs the current view, it enters the Receiver state if

initialState is RECEIVER and �nishes the bootstrap process. If this process

60 CHAPTER 5. PROCESS GROUP MEMBERSHIP

installs the current view and initialState is SENDER, it enters the To Sender

state. If this process is not able to contact a member of the sender group and

initialState is SENDER, it enters the Bootstrap Sender state.

When a process that is in the receiver group, wishes to join the sender

group, it enters the To Sender state. First, the process tries to �nd a process

in the sender group of the current view that will sponsor its join of the sender

group. If it cannot �nd one, it transitions to the MRA state, described in

Section 5.4. If this process does �nd such a process, called a sponsor, this

process requests its sponsor to send a PAdd message with this process' unique
identi�er as the proc �eld of that message. Once this request is con�rmed,
this process waits for that PAdd message to be delivered to the user. If the
request is not con�rmed, this process looks for another sponsor. If one of the
following events occurs while it awaits delivery of the PAdd message:

� Arrival of a PJoin message from a process that is not in the blockSet.

� Arrival of a PFailure message.

� Arrival of a PForeign message regarding a process that is not in the
blockSet.

� Arrival of a PFailBlock message from a process that is in the sender
group of the current view.

this process transitions to the MRA state. Once the PAdd message adding
this process to the sender group (actually a UMC message denoting the start
of a new view in which this process is in the sender group) is delivered, this

process transitions to the Sender state and the bootstrap is �nished.

The Bootstrap Sender state is used to add this process to the sender group,

if initialState is SENDER and this process couldn't successfully join the process

group as a receiver �rst. The processing inside this state is the same as in the

MRA state. The sending of user messages is disabled until the repair algorithm
is concluded and this process transitions to the Sender state, upon which the
bootstrap is �nished.

5.3. THE PROCESS GROUP MEMBERSHIP PROTOCOL 61

Figure 5.2: How the Receiver state is left in the membership protocols.

5.3.2 Leaving the Receiver State

The state diagram showing what happens when a process leaves the Receiver

state is shown in Figure 5.2. When a process is in the Receiver state, it is in
a normal or stable state. The process executes as if the membership of the
process group was static. There are only four reasons for the process to leave

this state: (1) it wishes to join the sender group, (2) a process in the sender

group of the current view has started a membership repair algorithm, (3) this
process suspects that all of the processes in the sender group have failed and

it has received a message from a process that is in a sender group of another
view, or (4) the sender group is empty in the current view and this process has

62 CHAPTER 5. PROCESS GROUP MEMBERSHIP

received a message from a process that is in a sender group of another view.

We describe the results of these four scenarios below, starting from the last

and moving forward.

A view with an empty sender group can be installed only if the last member

of the sender group leaves the group voluntarily. At this point, the process

in the Receiver state has nothing to do. If the process receives a PForeign

message while the sender group is empty, it behaves as if it is initializing the

membership protocol with initialState set to RECEIVER. Thus, it transitions

to the Bootstrap Receiver state and follows the transitions described previously.

If this process suspects that all of the processes in the sender group have
failed, it behaves as if the sender group were empty, and switches to the Boot-
strap Receiver state. However, if any of the processes that were in its sender

group appear in the sender group of the view it receives while it is in the Boot-
strap Receiver state, it follows a new transition. In this case it transitions to
the Install Singleton Membership state, where it installs a view whose sender
group consists of only itself. Once that is accomplished, it transitions to the
MRA state.

When a process in the sender group starts a membership repair algorithm,
it sends a PJoin message as part of that algorithm. Thus, on reception of a
PJoin message from a process in the sender group of the current view, this
process, in the Receiver state, transitions to the Wait for Membership Change

state, described in Section 5.5.

When a process in the Receiver state wishes to join the sender group, it
switches to the To Sender state. The To Sender state and the transitions from
it were described in Section 5.3.1.

5.3.3 Leaving the Sender State

The state diagram that indicates what happens when a process leaves the

Sender state is shown in Figure 5.3. When a process is in the Sender state, it

is in a normal or stable state. The process executes as if the membership of

the process group were static. There are only three reasons for the process to
leave this state: (1) it wishes to leave the sender group, (2) a process in the

sender group is suspected of having failed, or (3) it receives a message from a
process that is not in the sender group of the current view. We describe these

5.3. THE PROCESS GROUP MEMBERSHIP PROTOCOL 63

ReceiverSender

removed from sender

membership

Membership

Repair Algorithm

(MRA)
Receiver MRA

re
c
e
iv

e
d

a
P

J
o
in

,
P

F
a
ilu

re
,

P
F

o
re

ig
n

o
r

P
F

a
ilB

lo
c
k

m
e
s
s
a
g
e

fr
o
m

a
p
ro

c
e
s
s

th
a
t
is

n
o
t
in

th
e

b
lo

c
k
S

e
t

s
u
c
c
e
s
s
fu

l
c
o
m

p
le

ti
o
n

o
f

th
e

M
R

A

s
u

c
c
e

s
s
fu

l
c
o

m
p

le
tio

n
o

f

th
e

R
M

R
A

a
n

d
e

n
te

re
d

fro
m

T
o

R
e

c
e

iv
e

r
s
ta

te
To Receiver

received a ToReceiver
message

received
a

P
Join

m
essage

from
a

process
in

the

sender group
of the

current

configuration

Figure 5.3: How the Sender state is left in the membership protocols.

three scenarios below.
If a process that is in the Sender state wishes to leave the sender group, it

sends a PLeave message to the process group, stops sending new messages to
the group, and transitions to the To Receiver state. Once in the To Receiver

state, this process waits for the PLeave message it sent to be delivered to the
user. When this message is delivered, the process transitions to the Receiver
state. However, if the process receives a PJoin message from a process in the

sender group of the current view before it receives the PLeave message, then
the process transitions to theWait for Membership Change state, described in
Section 5.5.

If a process in the sender group of the current view is suspected of having
failed, one of the following events occurs:

� The fault detector of this process generates a PFailure message concern-
ing the process suspected to have failed, and the membership protocol

receives that message.

� The process receives a PJoin message from a process in the sender group

of the current view.

� The process receives a PFailBlock message from a process in the sender

64 CHAPTER 5. PROCESS GROUP MEMBERSHIP

group of the current view.

The occurrence of any one of these events will cause the process to transi-

tion out of the Sender state into the MRA state, described in Section 5.4.

If the process receives a PForeign message regarding a process that is not in

the sender group of the current view, and is not in the blockSet, it transitions

to the MRA state. This event signals that there is at least one more view

installed at a di�erent member of the process group. By switching to the

MRA state and running the repair algorithm, the protocol attempts to merge
these views into one.

5.4 Membership Repair Algorithm

The membership repair algorithm (MRA) is executed at a process that wishes
to be in the sender group of the next view. It is run while the process is in
the Bootstrap Sender state, described in Section 5.3.1, and in the MRA state

of the process group membership protocol. The entry conditions of the MRA

state have been discussed in Section 5.3. A process leaves the MRA state only
after it successfully completes the MRA and then transitions to the Sender

state.

We discuss the MRA in detail, because it allows the membership protocols
to deal with failures of processes, partitioning of the process group, and merg-
ing of components of the partitions. We discuss the messages and internal

variables �rst, followed by the protocol.

5.4.1 Data Structures

The MRA employs the following messages: PJoin, PFailure, PFailBlock,

RecInfo, RTC, MC and UMC. All of these messages are described in Sec-

tion 5.2. In addition to the blockSet variable common to the entire membership

protocol, the MRA uses the following internal variables:

� procSet: The set of processes that are being considered for the next
membership. This set can only grow during the run of an MRA.

5.4. MEMBERSHIP REPAIR ALGORITHM 65

� failSet: The set of processes that are being considered as failed for the

next membership. This set is a subset of procSet. It can only grow

during the execution of an MRA.

� lastProcTable: A mapping where the keys are processes in the setMi-

nus (procSet, failSet) and the entries are sets containing the last known

procSet for each of these processes. The sets are obtained from PJoin

messages sent by the processes.

� lastFailTable: A mapping where the keys are processes in the setMinus
(procSet, failSet) and the entries are sets containing the last known failSet
for each of these processes. The sets are obtained from PJoin messages
sent by the processes.

5.4.2 The Protocol

The state machine for the MRA is shown in Figure 5.4. The process enters
the MRA by entering the Initial state, where the MRA is initialized. The
delivery of messages to the user is halted and the sending of PLeave messages

is disallowed. The delivery of messages to the user needs to be halted, because
a cut (the place in the data stream delivered to the user) where the current view
ends needs to be agreed upon in the membership repair algorithm. If message
delivery were allowed, the cut that a process sends to the process group might
not be valid. The sending of PLeave messages is disallowed, because it would
cause the protocol to violate the termination property.

Upon the completion of these steps, the process transitions to the Con-

sensus state. In the Consensus state the processes participating in the MRA

attempt to reach agreement on the processes that will be in the sender group

of the next view. The pseudo-code for the Consensus state is shown in Fig-
ure 5.5. Upon the initial entry to the Consensus state, the procSet is initialized

to the sender group of the current view, and the failSet is initialized to the
empty set. The main loop of the consensus algorithm receives membership

messages, updates the appropriate variables, and sends membership messages
in response. The termination condition for the consensus algorithm is that all

of the processes in the set di�erence of the procSet and the failSet, called the

66 CHAPTER 5. PROCESS GROUP MEMBERSHIP

Initial

Consensus

Gather

Recovery

Info

Recovery

Wait for

Membership

Change

message

Return

Gather cut

info via

hierarchy

Gather

Ready To

Commit

messages

halted delivery to the application and

sending of Process Leave messages

reached
consensus

on
the

proposed
m

em
bership

received the cut info
for the

process group

received
a

Recovery Info

m
essage

from
all

processes in
proposed

m
em

bership

successfully recovered the
messages and leader of
proposed membership

su
cc

es
sf

ul
ly

re
co

ve
re

d
th

e

m
es

sa
ge

s
an

d
no

t l
ea

de
r
of

pr
op

os
ed

m
em

be
rs

hi
p

received a Ready To

Commit message from

every process in the

proposed membership

installed new membership

received
a

m
essage

that

does
not fit the

propose
d

m
em

bership

re
c
e
iv

e
d

a
m

e
s
s
a
g
e

th
a
t

d
o
e
s

n
o
t
fit

th
e

p
ro

p
o
s
e

d
m

e
m

b
e
rs

h
ip

re
c
e
iv

e
d

a
m

e
s
s
a
g
e

fro
m

th
e

n
e
w

le
a
d
e
r

th
a
t

c
o
n
tra

d
ic

ts
th

e
p
ro

p
o
s
e
d

m
e
m

b
e
rs

h
ip

o
r

d
e
te

rm
in

e
d

th
a
t
th

e
n
e
w

le
a
d
e
r

h
a
s

fa
ile

d

received
a

m
essage

that

does
not fit the

propose
d

m
em

bership

re
c
e
iv

e
d

a
m

e
s
s
a
g
e

th
a
t

d
o
e
s

n
o
t
fit

th
e

p
ro

p
o
s
e

d

m
e
m

b
e
rs

h
ip

Deliver and

install

re
c
e
iv

e
d

M
e
m

b
e
rs

h
ip

C
h
a
n
g
e

m
e
s
s
a
g
e

fro
m

le
a
d
e
r

o
f
p
ro

p
o
s
e
d

m
e
m

b
e
rs

h
ip

could
not recover

Figure 5.4: The Membership Repair Algorithm

5.4. MEMBERSHIP REPAIR ALGORITHM 67

consensus:
if (�rst time in consensus during this execution of the MRA)
procSet = currentMembSet

failSet = ;

multicast a PJoin message
while consensus not reached

msg = next message
switch (msg.type)
case PJoin:

if processJoin(msg) return (consensus reached)
case PForeign:

procSet = procSet [f msg.sender g

multicast a PJoin message

case PFailure:
procSet = procSet [f msg.proc g

failSet = failSet [f msg.proc g

multicast a PJoin message
case PFailBlock:

if (this process has ever delivered a message from msg.proc

with sequence number msg.procSeq)
failedProc = msg.sender

else
failedProc = msg.proc

blockSet = blockSet [f failedProc g

if (failedProc 2 procSet)
failSet = failSet [f failedProc g

multicast a PJoin message

boolean processJoin(msg)
if (msg.procs = ;)
multicast a PJoin message

return false
if (myID 2 msg.fail)
procSet = procSet [f msg.sender g

failSet = failSet [f msg.sender g

multicast a PJoin message
return false

if (msg.sender 62 procSet)
incorporateJoin(msg)
multicast a PJoin message
return false

if (msg.sender 62 failSet)
if (msg.procs 6� procSet OR
msg.fail 6� failSet)

incorporateJoin(msg)
multicast a PJoin message

else
incorporateJoin(msg)

if (consensusReached())
return true

return false

incorporateJoin(msg)
procSet = procSet [msg.procs

lastProcTable[msg.sender] = msg.procs

failSet = failSet [msg.fail

lastFailTable[msg.sender] = msg.fail

boolean consensusReached()
propMemb = f procSet - failSet g
for every proc 2 propMemb

if (procSet 6= lastProcTable[proc])
return false

if (failSet 6= lastFailTable[proc])
return false

return true

Figure 5.5: Pseudocode for consensus.

68 CHAPTER 5. PROCESS GROUP MEMBERSHIP

The membership repair algorithm might \believe" that the message in question does
not �t the proposed membership for one or more of the following reasons:

� The message is a PJoin message whose procs set is empty.

� The message is a PJoin message whose sender is not in the procSet.

� The message is a PJoin message whose procs set is not a subset of procSet and
the sender is in the proposed membership.

� The message is a PJoin message whose fail set is not a subset of failSet and the
sender is in the proposed membership.

� The message is a PForeign message whose proc identi�er is not in the procSet.

� The message is a PFailure message whose proc identi�er is in the proposed mem-
bership.

� The message is a PFailBlock message that this process has delivered and the
sender of the PFailBlock message is in the proposed membership (the sender of
this message is added to the blockSet as well).

� The message is a PFailBlock message that this process has not delivered and
the process characterized by the proc �eld of the PFailBlock message is in the
proposed membership is added to the blockSet.

Figure 5.6: Reasons for restarting consensus.

proposed membership, have agreed on the same procSet and failSet. Once this

condition is met, the process transitions to the Gather Cut Info state.

The process, upon entering the Gather Cut Info state, determines the local

cut information for its current view, and sends it via the control hierarchy. The
control hierarchy, aggregates the cut information of all of the processes in that

view, and returns a single cut value for that view. This cut value represents the

maximum information that can be recovered from this view. Upon receiving
this information from the hierarchy, the process sends a RecInfo message, as

a representation of this information, to the process group, and transitions to
the Gather Recovery Info state. If the process, while in this state, receives

a message that does not �t the proposed membership (for explanation, see
Figure 5.6), it transitions back to the Consensus state.

Once in the Gather Recovery Info state, the process waits to receive a
RecInfo message from every process in the proposed membership. The gath-

5.4. MEMBERSHIP REPAIR ALGORITHM 69

ering of the cut information through the hierarchy is not enough to obtain the

correct cut information. The gathering of RecInfo messages from all of the

processes in the proposed membership, provides a clearer cut for the process

group. It allows processes that enter from the same view to rule out some of

the inconsistencies between the structure of the process group and the control

group. It also allows processes that enter from di�erent views to share cut

information and allows the process to determine the time at which the next

view should be installed. Upon reception of all of the RecInfo messages, the

process transitions to the Recovery state. If the process, while in this state,
receives a message that does not �t the proposed membership (for explanation
see Figure 5.6), it transitions back to the Consensus state.

The Recovery state is the state in which the process attempts to acquire all
of the messages in its current view, that were sent before the cut for that view.
Upon entry to this state, the process calculates the cut for its current view, and
the time at which the next view is to be installed, from the information in the

RecInfo messages. Using this calculated information, the protocol obtains and
orders all of the messages necessary to install the next view. When all of these
messages are ready to be delivered, the process sends a RTC message (with
the sequence number of the �rst message to be delivered from this process in
the next view). After the RTC message is sent, the process transitions to the

Gather Ready To Commit Messages state if it is the leader of the next view, or
to the Wait for Membership Change Message state otherwise. The leader of a
view is the process that has the lowest unique process identi�er in the sender
group of a view. Thus, each process can determine who is the leader of the
next view locally, by the lowest process identi�er in the proposed membership.

If the process, while in this state receives a message that does not �t the

proposed membership (for explanation, see Figure 5.6), the protocol must roll
back the messages that are ready to be delivered to the point at which recovery
started Once this is done, the process transitions back to the Consensus state.

If this process is unable to recover all of the messages due to a failure of a

process that was the only one holding a copy of a message that needed to
be recovered, a PFailBlock message will be sent accusing an already failed

processes of failing. This action will cause the process to determine a new cut,
and send a RecInfo message based on that cut. Once the RecInfo message is

sent, the process waits to roll back the messages that are ready to be delivered

70 CHAPTER 5. PROCESS GROUP MEMBERSHIP

to the point at which recovery started, and then transitions back to the Gather

Recovery Info state.

The leader of the next view waits to receive a RTC messages from every

process in the proposed membership while it is in the Gather Ready To Com-

mit Messages state. Once it has received all of the RTC messages, it chooses a

unique identi�er for the next view, constructs a MC message with that identi-

�er, sends it to the process group, and transitions to the Wait for Membership

Change Message state. If the process, while in this state, receives a message

that does not �t the proposed membership (for explanation, see Figure 5.6),
it must roll back the messages that are ready to be delivered to the point at
which recovery started. Once that task is �nished, the process transitions back
to the Consensus state.

A process in the Wait for Membership Change Message waits for a MC

message from the leader of the next view. Once it receives this message, the
process transitions to the Deliver and Install state. If the process, while in
this state, suspects that the leader of the next view has failed or receives
a message from the leader of the next view that is not consistent with the
proposed membership, it must roll back the messages that are ready to be

delivered to the point at which recovery started. Once that task is �nished,
the process transitions back to the Consensus state.

In the Deliver and Install state, the process delivers all of the messages
ordered in the Recovery state to the application, followed by a UMC message
based on the information in the MC message received from the new leader.

The next sequence number that each process in the sender group of the new
view delivers is set, according to the information in the MC message, if that
value is not already larger. It cancels all retransmission requests for messages
with a lower sequence number from that process. Finally, the process installs

the new view, and resumes delivery of messages to the user and the sending

of PLeave messages, before it exits the MRA.

5.5 Receiver Membership Repair Algorithm

The receiver membership repair algorithm (RMRA) is executed at a process
that is not in the sender group of the current view, or that has shown no
intention to be in the sender group of the next view. A process executes

5.5. RECEIVER MEMBERSHIP REPAIR ALGORITHM 71

the RMRA while it is in the Waiting for Membership Change state of the

process group membership protocol. We have discussed the entry conditions

of the Waiting for Membership Change state previously. The Waiting for

Membership Change state may be exited after a successful completion of the

RMRA or if the process does not \believe" that the RMRA can be completed.

If the RMRA is successful, the process transitions back to the state from

which it entered the Waiting for Membership Change state. If the RMRA is

unsuccessful, the process transitions to the Bootstrap Receiver state.

We discuss the RMRA in detail, because it allows the membership proto-
col to deal with failures of processes, partitioning of the process group, and
merging of partitions. It di�ers from the MRA, because the process does not
actively participate in the exchange of membership messages, other than re-
porting its local cut information to the control group. It can only observe

messages and, thus, making the correct decision is even more important. For
this reason, we have had to allow the process to leave the RMRA, deeming it
unable to terminate.

5.5.1 Data Structures

The RMRA employs the following messages: PFailure, MC and UMC. All of
these messages are described in Section 5.2.

5.5.2 The Protocol

The state machine for the RMRA is shown in Figure 5.7. The process enters
the RMRA by entering the Initial state. This is where the RMRA is initialized.

The delivery of messages to the user is halted.

Upon the completion of this task, the process determines the local cut
information for its current view and sends it via the control hierarchy, and

then transitions to the Wait for Membership Change Message state.

A process in the Wait for Membership Change Message waits for a MC

message that contains the current view identi�er in the oldIDs �eld. Once it
receives this message, it enters the Recovery state.

The Recovery state is the state in which the process attempts to acquire
all of the messages in its current view, before the cut for that view. Upon

72 CHAPTER 5. PROCESS GROUP MEMBERSHIP

Initial

Recovery

Wait for

Membership

Change

message

Return

success

halted
delivery

to
the

application
and

sent cut

inform
ation

via
control

hierarchy

finished
recovery

installed
new

m
em

bership

Deliver and

install

received
a

M
em

bership

C
hange

m
essage

that

includes
m

y
current

configuration
identifier on

it

o
ld

ID
s

field

Return

no

success

re
ce

iv
e
d

a
P

F
o
re

ig
n

m
e
ss

a
g
e

a
n
d

su
sp

e
ct

a
ll

p
ro

ce
ss

e
s

in
th

e
se

n
d
e
r

g
ro

u
p

o
f
m

y
cu

rr
e
n
t

co
n
fig

u
ra

tio
n

to
h
a
ve

fa
ile

d

could not recover, or

received a PForeign

message and suspect all

processes in the sender

group of the configuration in

the Membership Change

message to have failed

Figure 5.7: The Receiver Membership Repair Algorithm.

entry to this state, the process calculates the cut for its current view, and the

time at which the next view is to be installed, from the information in the MC

message. If the process has delivered messages following the calculated cuts, it
declares itself failed, informs the application of this fact and exits. Otherwise,
it obtains and orders all of the messages necessary to install the next view.

5.6. PROCESS AND NETWORK FAULT DETECTOR 73

When all of these messages are ready to be delivered, the process transitions

to the Deliver and Install state.

In the Deliver and Install state, the protocol delivers all of the messages

ordered in the Recovery state to the application, followed by a UMC message

based on the information in the MC message received from the new leader.

The next sequence number of the message to be delivered from each process

in the sender group of the new view is set according to the information in the

MC message, if that value is not already larger. All retransmission requests

for messages with a lower sequence number from that process are canceled.
Finally, the new view is installed, delivery of messages to the user is continued,
and the sending of PLeave messages is allowed again, and the RMRA is deemed
successful.

The RMRA is deemed unsuccessful if (1) all of the processes in the sender

group of the current view are suspected of having failed before the MC message
is received and a PForeign message is received, (2) all of the processes in the
sender group of the view speci�ed in the MC are suspected of having failed
after the MC is received and a PForeign message is received, or (3) the process
is not able to complete the recovery phase.

5.6 Process and Network Fault Detector

The process and network fault detector is responsible for determining pro-
cess failures and the reachability of processes, and is based on timeouts. The

process and network fault detector analyzes every message received from the
process group. If it does not receive a message from a process for a predeter-
mined amount of time it noti�es the system of this via a PFailure message.

In order for this approach to work, processes must send messages periodically
even when they have no data to send. This requirement is satis�ed because

every process that is sending data also periodically sends Keep Alive messages.

74

Chapter 6

Implementation

The InterGroup protocols are implemented as three major components: the
control hierarchy, the reliable multicast, and the ordering and delivery. Each
of these components is implemented as described in the preceding chapters.

Each component is built using a set of threaded modules that communicate via
an asynchronous event/message model. Because di�erent services require dif-
ferent modules, each component is designed so that the modules and message
ows can be dynamically constructed and maintained. They are built around
the InterGroupThreadedModule (IGTM) class, described in Section 6.1.

For testing purposes a statistics gathering infrastructure was added to the
protocols. This allows unobtrusive collection of performance data from within

the protocol stack, and has simpli�ed the task of data collection in our wide-
area test bed. The statistics gathering infrastructure and the wide-area test
bed design are presented in Section 6.2.

6.1 The InterGroupThreadedModule

The InterGroup protocols implementation uses an asynchronous event/message

model for communication between modules within a component. The base

class for all modules in the InterGroup protocols implementation is the Inter-
GroupThreadedModule (IGTM).

The IGTM implements two interfaces: Runnable and MessagePublisher
(MP). It also contains a PriorityQueue class that implements the Message-

Subscriber (MS) interface.

75

76 CHAPTER 6. IMPLEMENTATION

The Runnable interface is de�ned in the Java(TM) 2 Platform Standard

Edition API[31]. It allows the IGTM to run as a thread.

The MP interface allows for the publishing of events/messages to classes

that implement the MS interface.1 Subscriptions are made via an attach

method. The MP interface also provides a mechanism for subscribers to cancel

their subscriptions using a detach method. The IGTM implementation of

the MP interface uses a data structure that maps message types to message

subscribers. Whenever a message is published via the notify method, the

update method of each of the subscribers to the message type is called. This
implementation allows subscribers to subscribe to and receive events/messages
of di�erent types and allows multiple subscribers to receive the same types of
events/messages.

The PriorityQueue class implements the MS interface. It receives messages
via the update method and bu�ers them until the IGTM is ready to process

them. When the IGTM is ready to remove a message from the PriorityQueue,
the message returned to the IGTM is chosen using a randomized priority
queue algorithm based on the priority of the messages in the queue. The
implementation of the PriorityQueue makes no guarantee that messages of
di�erent priorities will leave the queue in the order in which they arrived.

However, for messages of the same priority, the PriorityQueue acts as a FIFO
queue.

The properties of the IGTM class allow for easy setup of dynamic, con�g-
urable, asynchronous data ows within components.

6.2 The Statistics Gathering Infrastructure

In designing the statistics gathering infrastructure we had the following goals
in mind: (1) to have control over the statistics reporting at the API level,

(2) to allow application-speci�c statistics reports, and (3) to minimize the
cost of the infrastructure when statistics reporting is turned o�. We meet

these goals by (1) using a singleton system-wide class that performs the actual

reporting to the statistics server, (2) de�ning a StatisticsInterface that gives
the programmer control over when the actual reporting to the statistics server
is done, and (3) choosing a statistics message format that allows applications

to de�ne application-speci�c messages in an easy manner.

1An event/message may be an object of any class that implements the Message interface.

6.2. THE STATISTICS GATHERING INFRASTRUCTURE 77

6.2.1 Client-side Implementation

The StatisticsInterface is implemented by the InterGroupObject (IGO) class

in the InterGroup protocols. The IGO class uses a FIFO bu�er to hold objects

pending delivery to the statistics server. We use a bu�er to hold statistical in-

formation to reduce the cost of statistics reporting. By using the incStat(Object

o) method, a subclass of IGO can log statistics even in time-critical sections of

the code. Thus, the actual reporting to the statistics server via the sendStat()

method can be delayed, without major modi�cations to the code of the class.

The sendStat() method calls the singleton system-wide class StatisticsModule
that does the actual reporting to the statistics server. By using the Statistic-
sModule class in this way we prevent interleaving of concurrent reports at the
statistics server.

6.2.2 Server-side Implementation

The StatisticsServer accepts connections from the reporting processes and
launches a StatListen thread for each connection. Each StatListen thread,
logs all the messages it receives in a �le for later processing. The �lename has
the following format:

name of client: W.X.Y.Z

of connections accepted by server before this one: n

�lename = Z/Y/X/W/proton.igs

Optionally, a real-time statistics processor and viewer may be added to the
statistics server.

6.2.3 Statistics Messages

The format of statistics messages is relatively free-form, which allows an ap-

plication to easily send statistics reports. A statistics message is de�ned as a
list of Objects. The following are the restrictions on statistics messages:

� All objects in a statistics message must inherit the Serializable inter-
face [31].

� The �rst object in a statistics message must be a String that represents
the type of the message. The following types are reserved by the pro-

tocols, and should not be used by applications: \P INIT," \COORD

78 CHAPTER 6. IMPLEMENTATION

MEMB," \LOCAL MEMB," \PLEAVE," \MRA," \NO MRA," \MC,"

\TO SENDER," \SPONSOR," \PADD," \RTR," \Sent RTR," \RTX."

6.2.4 The WAN Testbed

We have developed an application for testing the InterGroup protocols over

a wide-area network. It uses the statistics gathering infrastructure to report

on progress and other relevant statistics. This allows the application to run

unsupervised, allowing us to distribute it to interested parties, without having
to obtain accounts on their systems, and thus allows us to run more compre-
hensive tests of the protocols.

The application is split into two components: UDP reporting and Inter-
Group reporting. The UDP reporting uses IP multicast directly for the inter-

application communication. It provides a baseline for the reachability and
performance measurements in the wide-are environment. The UDP reporting
component is based on the Beacon component of the Multicast Beacon [46] at
the National Laboratory for Applied Network Research (NLANR). The pro-
cesses communicate via multicast messages. Messages are periodically sent to

the multicast group. Based on the received messages, each process creates a
report that is sent out periodically to the InterGroup statistics server using the
InterGroup statistics gathering infrastructure.. The report provides informa-
tion on reachability, latency, jitter, losses, and out-of-order messages between
this process and the other group members. The InterGroup component uses

the InterGroup protocols for inter-application communication. Otherwise, the
InterGroup component behaves in the same manner as the UDP component.

Chapter 7

Performance

To validate the behavior and to obtain performance numbers, we ran the Inter-
Group Protocols in a local-area environment and in a wide-area environment.
The local-area experiments provide us with information on the behavior of the

protocols in a controlled setting. For these experiments, we ran the protocol
on a computer cluster of the Computer Science Department at the University
of California, Santa Barbara and on a LAN in the Computer Networks and
Distributed Systems Laboratory of the Electrical and Computer Engineering
Department at the University of California, Santa Barbara.

The cluster consists of 36 dual Pentium II 400MHz CPU nodes and 6
quad Pentium III 500MHz CPU nodes. Twenty-four of the dual nodes have
512MB of RAM, while the rest of the nodes have 1GB of RAM. Each node
contains two 100 Mb/s Ethernet cards and all the nodes are connected through

a Gigabit Switch. The nodes on the cluster run Linux version 2.2.15 (RedHat
distribution) and Java(TM) VM version 1.2.2 (Classic VM build 1.2.2-L, green

threads, javacomp).

In the Computer Networks and Distributed Systems Laboratory, 4 Pen-

tium II xxxMHz nodes were used for the experiments. Each of the nodes
has 128MB of RAM. Each node contains a 100 Mb/s Ethernet card and the

nodes are connected via a 100 Mb Ethernet. The nodes run Linux version
2.2.x (Mandrake distribution) and Java(TM) version 1.3.0beta refresh with

the Java HotSpot(TM) Server VM (build 1.3.0beta-b07).

The wide-area experiments provide us with information on the behavior of
the protocols in a more hostile environment. For these experiments, we ran the

protocol on computers located at the Lawrence Berkeley National Laboratory

79

80 CHAPTER 7. PERFORMANCE

Number of Message Data Data
processes size Throughput Throughput

(bytes) (msgs/sec) (bytes/sec)
1 1 96 96
2 1 154 154
4 1 248 248
1 1000 94 94000
2 1000 140 140000
4 1000 140 140000
1 10000 70 700000
2 10000 30 300000
4 10000 18 180000

Table 7.1: Data throughput on the CS cluster.

(LBNL) and Argonne National Laboratory (ANL). The computers used varied
in processor architecture (i386, SPARC), operating system (Solaris 2.6-2.7,
Linux 2.2.x) and virtual machine (classic Sun 1.2.x VM, HotSpot(TM) Client
1.3.x, HotSpot(TM) Server 1.3.x).

7.1 Local-area Environment

We investigated the latency and throughput of the InterGroup protocols in the

local-area environment. We also observed the protocol overhead during these
experiments. In all of the experiments, the processes requested the group
timestamp ordered delivery service.

7.1.1 Throughput Measurements

To measure the throughput of the InterGroup protocols, we set up a system

consisting of one process group. We varied the number of processes and the
payload size of the messages sent. We sent messages as fast as the InterGroup

protocols allowed. We used the dual Pentium II nodes of the cluster for our
experiments. Table 7.1 shows the throughput we obtained in our experiments

on the cluster.

The maximum message send rate at a process is 100 messages/sec. This

is due to the interaction of our ow control algorithm and the Thread.sleep
method implementation in the Java(TM) Virtual Machine (Java(TM) VM).

7.1. LOCAL-AREA ENVIRONMENT 81

The ow control algorithm determines how long the protocols should wait

before sending the next message. The waiting is accomplished by calling the

Thread.sleep method. We have found that this method, on average adds 10ms

to any call to it (i.e., if an argument of 15ms is passed to the Thread.sleep

method, it returns in 25ms, on average).1 Thus, with this combination, the

best send rate at a process, is 100 messages/sec.

The performance of the system su�ers tremendously when the system at-

tempts to send messages faster than 200kb/sec. A this point, the receivers

begin losing large blocks of messages. This is due to the garbage collection

mechanisms in the Java(TM) VM on these systems.

We ran throughput tests with the garbage collection mechanisms turned

o�. These tests showed that the system can process up to 900 messages/sec
if there are no losses in the network. However, with garbage collection turned
o�, the system can run for only a very limited time.

The HotSpot(TM) 1.3.x Java(TM) VM from Sun o�ers an option for in-
cremental garbage collection. We had problems running this implementation
on the cluster because of a bug in the glibc version installed on the cluster.

Thus, we ran the same throughput tests, using the incremental garbage
collection option, on machines in the Computer Networks and Distributed
Systems Laboratory. Table 7.2 shows the throughput results we obtained.

The maximum send rate at a process is now 50 messages/sec. This is due
to the fact that, in this VM, on average 20ms is added to any call to the
Thread.sleep method. 2

With incremental garbage collection, we see that the throughput stays
stable within the observed cases.

7.1.2 Latency Measurements

We measured the delivery latencies for a system consisting of one process
group and varying the number of processes in the group. The experiments
were performed on the dual Pentium II cluster nodes. We also varied the

sending behavior of the application. In one case, we had the application send

messages as fast as the InterGroup protocols would allow. In another case,

the application sent messages every 100 milliseconds.

1The same behavior is observed for the Object.wait method.
2Again, we observed the same behavior with the Object.wait method. We also observed

that the IBM 1.3 VM implementation shows the same behavior.

82 CHAPTER 7. PERFORMANCE

Number of Message Data Data
processes size Throughput Throughput

(bytes) (msgs/sec) (bytes/sec)
1 1 49 49
2 1 98 98
4 1 197 197
1 1000 48 48000
2 1000 97 97000
4 1000 195 195000
1 10000 48 480000
2 10000 96 960000
4 10000 185 1850000

Table 7.2: Data Throughput on the Laboratory LAN.

Number of Minimum Maximum Mean Median
processes Latency Latency Latency Latency

(ms) (ms) (ms) (ms)
App IG App IG App IG App IG

2 5 1 752 355 25 10 20 2
4 8 3 781 613 58 45 21 11

Table 7.3: Delivery latency at full throughput.

The delivery latencies presented are the delivery latencies to the group
i.e., the delivery latency was computed as the di�erence between the sending

time of a message and the last time of delivery of that message. The application
latencies are end-to-end latencies at the application, measured from the time
the message is sent to the InterGroup protocols until the time the message
is received from the protocols. The protocol latencies are measured from the

time the message is sent to the outgoing socket until the time it is ready to be

delivered to the application.

Latency at Full Throughput

In this latency experiment each process sent data messages as fast as the

InterGroup protocols allowed. Table 7.3 shows the latency results.

No messages were lost in any of these runs.

A long tail in the latency distribution exists in the results that inuences

the mean and median values. The tail is due to the garbage collector. When

7.1. LOCAL-AREA ENVIRONMENT 83

the garbage collector runs, the protocol threads make very slow progress and

the messages get delayed by the duration of the garbage collection process.

Figure 7.1 shows the latency frequencies for the two node experiment. In

the �gure we observe dominant peaks in the latencies. These are the delivery

latencies that are not a�ected by the garbage collector. It can also be observed

that the application latencies are shifted by 10ms (excluding the e�ects of the

garbage collector). This is due to the ow control e�ect noted earlier.

Figure 7.1: The delivery latency distribution at full throughput for four nodes.

Maximum Latency

In this latency experiment, each process sends a message every 100 millisec-
onds. Keep Alive messages were sent with a uniform distribution every 25-75

ms. Thus, these measurements reect the latency to delivery of the protocols

84 CHAPTER 7. PERFORMANCE

Number of Minimum Maximum Mean Median
processes Latency Latency Latency Latency

(ms) (ms) (ms) (ms)
App IG App IG App IG App IG

1 1 0 712 710 1 0 2 1
2 2 1 1253 982 44 37 37 27
4 11 3 1242 1187 80 57 57 44
8 18 9 3444 1977 760 747 741 733
16 41 38 4391 3630 1325 1315 1355 1346

Table 7.4: Delivery latency at 10 msgs/sec send rate at each sender.

when the Keep Alive timeout is the main factor in the delivery latency. The

theoretical maximum delivery latency for timestamp group ordered delivery
in the absence of errors is

Equation 7.1 latencymax = distancemax +KEEP ALIV E TIMEOUT

The maximumlatency of the protocol in these experiments is thus expected
to be 75 ms. Table 7.4 shows the results obtained from this experiment.

The results are again a�ected by the garbage collector, so we must look
at the latency frequencies to obtain meaningful results. Figure 7.2 shows
the latency frequencies for the application delivery latency in the four-node

experiment. We observe dominant peaks in the 40-80 ms range. We also
observe the e�ects of the garbage collector in the tail.

Figure 7.2: The application delivery latency distribution for four nodes.

7.1. LOCAL-AREA ENVIRONMENT 85

Figure 7.3 shows the latency frequencies for the application delivery latency

in the 16 node experiment. Here we can see that the garbage collector e�ects

have become the dominant feature, although a peak around 70ms still exists.

This shows that in the absence of the garbage collector the latencies would be

as predicted.

Figure 7.3: The application delivery latency distribution for sixteen nodes.

7.1.3 Protocol Overhead

During the local-area measurements, we also measured the overhead of the ad-
ditional protocol messages and headers. The experimental results corroborate
the theoretical expectations.

The ow control used for control messages is RTCP-based with a minimum
time between messages of 1 second. Thus, if the bandwidth consumed by

the control messages is less than the allowed maximum control bandwidth of

390 kB/sec, each process should, on average, send one control message every
second. The control bandwidth in our experiments was much lower than 390

kB/sec, and the average number of control messages received per second was
equal to the number of processes participating in the experiment.

Overhead messages, other than the control messages, were mainly due to
retransmission requests and repairs. This overhead depends on a variety of

factors and cannot be easily predicted. On average, we observed only slightly

more than one request and repair message per message loss.

86 CHAPTER 7. PERFORMANCE

Application message Percent
size (bytes) overhead

1 98.54%
1000 6.55%
10000 0.71%

Table 7.5: Protocol overhead.

The only overhead messages that occur in the error-free case are the Keep

Alive messages. These messages are sent only when there are no application
messages to be sent or when the ow control algorithms block the sending of
application messages. Thus, Keep Alive messages were mainly observed in the
latter latency experiment.

Thus, in terms of message count, the protocol overhead becomes a signif-
icant factor only when the application is sending data at a rate less than the
inverse of the average Keep Alive timeout. This was the case in the latter la-

tency experiment. In that experiment, slightly more than half of the messages
produced by the protocol were non-application data messages.

The protocol header for application messages comprises 72 bytes, 32 of
which are due to IP and Java(TM) headers. Thus, in terms of byte counts

the protocol overhead becomes a signi�cant factor when the messages being
sent by the application are small. In Table 7.5 we show the observed percent
overhead, in terms of bytes, for the message sizes used in our experiments.

7.2 Wide-area Environment

We investigated the application latency to delivery of the InterGroup protocols
in the wide-area environment for the unreliable unordered delivery service and

the reliable group timestamp ordered delivery service. The WAN testbed

described in Section 6.2.4 was used to gather the data. We present here the
results obtained from an experiment conducted from 9pm on September 20,

2000 through 9am September 21, 2000. Each node sent an application message
every second and Keep Alive messages were sent every 50ms. Reports on the

delivery latencies were gathered by the nodes and sent to a centralized server

every 30 seconds. The experiment was run on 6 nodes, 3 at LBNL and 3 at
ANL.

Figure 7.4 shows the latency to delivery of messages, sent by a node at

7.2. WIDE-AREA ENVIRONMENT 87

ANL and delivered at a node at LBNL. The unreliable unordered delivery

curve shows only the maximum latencies to this node for each report period.

Application Delivery Latency (ANL to LBNL)

0

1

2

3

4

5

6

7

8

9

10

30 80 130 180 230

Latency (ms)

O
cc

ur
en

ce
 o

f M
es

sa
ge

s
(%

 o
f a

ll
m

es
sa

ge
s)

Unreliable Unordered Delivery Service Reliable Group Timestamp Ordered Delivery Service

Figure 7.4: The application delivery latency between ANL and LBNL.

The theoretical latency to delivery for timestamp group ordered delivery,

of message from other nodes, in the absence of errors is

Equation 7.2 dLatrgto � dLatuu +KEEP ALIV E TIMEOUT

where dLatrgto is the latency to delivery for the reliable group timestamp or-
dered service and dLatuu is the latency to delivery for the unreliable unordered

service. This latency is obtained from Equation 7.1 and the fact that the de-
livery latency for the unreliable unordered service will always be greater than

or equal to the distance (in terms of time) between any two nodes.

88 CHAPTER 7. PERFORMANCE

Thus, by Equation 7.2 and the results presented in Figure 7.4 the latency

to delivery for the reliable group timestamped ordered service should not be

greater than 140ms in the absence of errors.

A message loss delays the delivery of all subsequent messages until the lost

message is retrieved. The link between ANL and LBNL experienced message

losses, and thus the theoretical latency to delivery must account for the time

to recover a lost message. In this experiment we have determined that the

time to recover a missing message was in the range 40ms-180ms. Thus the

maximum theoretical latency becomes 250ms.
We have shown that the latency to delivery for the reliable group times-

tamp ordered service in the wide-area matches our theoretical assumptions.
The garbage collection e�ects we observed in the local-area experiments did
not appear in our wide-area experiments since these experiments were not as

network (bandwidth) intensive.

Chapter 8

Conclusion and Future Work

To achieve scalability in a group communication system, we have had to change
some of the basic ideas of group communication systems and have had to devise
novel mechanisms for such systems. Traditional group communication systems

have strict safety properties and, to achieve our goals, we have had to modify
some of these properties.

To this end we created an asymmetry in the role of the processes in the
system based on their sending activity. This asymmetry has allowed us to

decrease the number of processes participating in most consensus decisions.
Thus, we have focused on the membership of the sender group and, conse-
quently, we have slightly weaker delivery guarantees.

The InterGroup protocols employ a hierarchical structure for gathering and
distributing control information. This structure allows acknowledgments and
consensus information to be sent to the processes without causing message
implosion. Using this hierarchy for acknowledgments adds an additional delay

for messages to reach stability. This delay a�ects the clearing of message

bu�ers and ow control mechanisms, if message stability is required.

The InterGroup system introduces a receiver-oriented choice of delivery

services to group communication systems. This choice of delivery services

allows individual processes to leverage their own ordering, reliability and real-

time constraints independently of the other processes in the system. It also sets

the InterGroup protocols apart from traditional group communication systems.
The system thus becomes a hybrid of traditional group communication systems

and asymmetric systems, where a small number of processes transmit data to

a large number of receivers.

89

90 CHAPTER 8. CONCLUSION AND FUTURE WORK

We have implemented a prototype of the InterGroup protocols in Java(TM)

and have tested the system performance in both local-area and wide-area net-

works. The performance of the system under a constant load was hampered by

the garbage collection mechanisms of the Java(TM) Virtual Machines. Other-

wise, the behavior of our prototype implementation matched our expectations.

In the future, we will attempt to improve the performance of the protocols

by �ne-tuning the implementation. This will include better memory manage-

ment inside the InterGroup system, so that the e�ects of the garbage collector

are minimized. Also, we will consider rewriting the code in C++.
Future work also includes adding other delivery services to the existing

services. The services of interest include unreliable source ordering, unreliable
timestamp ordering, and an ALF-enabled service. We also plan to build a
protocol layer on top of the existing InterGroup protocols that allows processes

to perform ordering across process groups.
Other future work includes adding a proxy service, so that a process may

send messages to the group without having to join the sender group. We are
also interested in adding a service for approximating the receiver membership.
We have implemented a prototype of this service using RTCP.

Bibliography

[1] H. Abdel-Wahab, K. Maly, A. Youssef, E. Stoica, C. M. Overstreet,

C. Wild, and A. Gupta. The software architecture and interprocess com-
munications of IRI: an internet-based interactive distance learning sys-
tem. In Proceedings of IEEE Workshops on Enabling Technologies: In-

frastructure for Collaborative Enterprises (WETICE'96), Stanford, CA,
June 1996.

[2] D. A. Agarwal. Totem: A Reliable Ordered Delivery Protocol for Intercon-

nected Local-Area Networks. PhD thesis, University of California, Santa
Barbara, August 1994.

[3] E. S. Al-Shaer, H. Abdel-Wahab, and K. Maly. HiFi: A new monitoring
architecture for distributed system management. In Proceedings of the

19th IEEE International Conference on Distributed Computing Systems,

pages 171{178, Austin, TX, June 1999.

[4] Y. Amir, D. Breitgand, G. Chockler, and D. Dolev. Group communication
as an infrastructure for distributed systemmanagement. In Proceedings of

the 3rd International Workshop on Services in Distributed and Networked

Environments (SDNE), pages 84{91, Macau, China, June 1996.

[5] Y. Amir, C. Danilov, and J. Stanton. A low latency, loss tolerant architec-
ture and protocol for wide area group communication. In Proceedings of

the International Conference on Dependable Systems and Networks, New

York, NY, June 2000.

[6] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Membership algorithms

for multicast communication groups. In Proceedings of Distributed Algo-

rithms. 6th International Workshop, WDAG '92, pages 292{312, Berlin,

Germany, November 1992.

91

92 BIBLIOGRAPHY

[7] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A communication

subsystem for high availability. In Proceedings of the 22nd IEEE Interna-

tional Symposium on Fault-Tolerant Computing, pages 76{84, New York,

NY, July 1992.

[8] O. Babaoglu, A. Bartoli, and G. Dini. Enriched view synchrony: A pro-

gramming paradigm for partitionable asynchronous distributed systems.

IEEE Transactions on Computers, 46(6):642{658, June 1997.

[9] O. Babaoglu, R. Davoli, and A. Montresor. Partitionable group member-
ship: speci�cations and algorithms. Technical Report TR UBLCS97-1,

Department of Computer Science, University of Bologna, January 1997.

[10] K. Berket, R. Koch, L. E. Moser, and P. M. Melliar-Smith. Timestamp
acknowledgments for determining message stability. In Proceedings of the

2nd International Conference on Parallel and Distributed Computing and

Networks, Brisbane, Australia, December 1998.

[11] K. Birman, R. Friedman, M. Hayden, and I. Rhee. Middleware support
for distributed multimedia and collaborative computing. In Proceedings

of the SPIE/ACM Conference on Multimedia Computing and Networking

(MMCN'98), San Jose, CA, January 1998.

[12] K. Birman and T. Joseph. Exploiting virtual synchrony in distributed
systems. In Proceedings of the Eleventh ACM Symposium on Operating

Systems Principles, pages 123{138, Austin, TX, November 1987.

[13] K. P. Birman and R. Van Renesse, editors. Reliable Distributed Computing
with the Isis Toolkit. IEEE Computer Society Press, 1994.

[14] C. Bormann, J. Ott, H.-C. Gehrcke, T. Kerschat, and N. Seifert. MTP-2:

Towards achieving the S.E.R.O. properties for multicast transport. In
International Conference on Computer Communications and Networks

(ICCCN 94), San Francisco, CA, USA, September 1994.

[15] V. G. Cerf and R. E. Kahn. A protocol for packet network intercommu-
nication. IEEE Transactions on Communications, 22(5):647{648, May

1974.

BIBLIOGRAPHY 93

[16] S. Chodrow, M. Hircsh, I Rhee, and S. Y. Cheung. Design and implemen-

tation of a multicast audio conferencing tool for a collaborative computing

framework. In Proceedings of 3rd Joint Conference on Information Sci-

ences (JCIS '97), Research Triangle Park, NC, March 1997.

[17] D. Clark and D. Tennenhouse. Architectural considerations for a new

generation of protocols. In Computer Communications Review, vol. 20,

no. 4, ACM SIGCOMM '90 Symposium. Communications Architectures

and Protocols, pages 201{208, Philadelphia, PA, USA, September 1990.

[18] J. Cooperstock and S. Kotsopoulos. Why use a �shing line when you have
a net? an adaptive multicast data distribution protocol. In Proceedings of

USENIX 1996 Annual Technical Conference, pages 343{352, San Diego,
CA, USA, January 1996.

[19] S. Deering. Host extensions for IP multicasting. Network Working Group
Request for Comments Internet RFC-1112, 1989.

[20] Moser L. E., P. M. Melliar-Smith, and P. Narasimhan. Consistent object
replication in the eternal system. Theory and Practice of Object Systems,
4(2):81{92, 1998.

[21] P. Ezhilchelvan, R. Macedo, and S. Shrivastava. Newtop: A fault-tolerant
group communication protocol. In Proceedings of the 15th IEEE Inter-

national Conference on Distributed Computing Systems, pages 296{306,
Vancouver, Canada, May 1995.

[22] A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a parti-
tionable group communication service. In Proceedings of the 16th ACM

Symposium on Principles of Distributed Computing (PODC), pages 53{

62, Santa Barbara, CA, August 1997.

[23] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang. A reliable

multicast framework for light-weight sessions and application level fram-
ing. IEEE/ACM Transactions on Networking, 5(6):784{803, December
1997.

[24] R. Friedman and R. van Renesse. Strong and weak virtual synchrony in
Horus. Technical Report TR 95-1537, Department of Computer Science,

Cornell University, August 1995.

94 BIBLIOGRAPHY

[25] R. Friedman and A. Vaysburg. Fast replicated state machines over par-

titionable networks. In Proceedings of the IEEE 16th International Sym-

posium on Reliable Distributed Systems, Durham, NC, October 1997.

[26] D. Gang, G. Chockler, T. Anker, A. Kremer, and T. Winkler. Conducting

midi sessions over the network using the transis group communication

system. In Proceedings of the International Computer Music Conference

(ICMC 97), Thessaloniki, Greece, September 1997.

[27] J. Hickey, N Lynch, and R van Renesse. Speci�cations and proofs for
ensemble layers. In Proceedings of the Fifth International Conference

on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS '99), Lecture Notes in Computer Science, Amsterdam, Nether-
lands, March 1999. Springer-Verlag.

[28] M. Hofmann. Adding scalability to transport level multicast. In Proceed-

ings of Third International COST 237 Workshop, pages 41{55, Barcelona,
Spain, November 1996.

[29] H. W. Holbrook, S. K. Singhal, and D. R. Cheriton. Log-based receiver-
reliable multicast for distributed interactive simulation. Computer Com-

munication Review, 21(4):328{341, October 1995.

[30] IETF reliable multicast transport (rmt) working group home page.
http://www.ietf.org/html.charters/rmt-charter.html.

[31] Java(tm) 2 platform, standard edition, v1.2.2 API speci�cation.
http://java.sun.com/products/jdk/1.2/docs/api/index.html.

[32] I. Keidar and D. Dolev. E�ecient message ordering in dynamic networks.
In Proceedings of the 15th ACM Symposium on Principles of Distributed

Computing (PODC), pages 68{76, Philadelphia, PA, May 1996.

[33] B. Kemme and Alonso G. A suite of database replication protocols based
on group communication primitives. In Proceedings of the 18th IEEE

International Conference on Distributed Computing Systems, pages 156{

163, Amsterdam, Netherlands, May 1998.

[34] R. Khazan, A. Fekete, and N. Lynch. Multicast group communication as
a base for a load-balancing replicated data service. In Proceedings of the

BIBLIOGRAPHY 95

12th International Symposium on Distributed Comupting (DISC), pages

258{272, Andros, Greece, September 1998.

[35] R. R. Koch. The Atomic Group protocols: reliable ordered message de-

livery for ATM networks. PhD thesis, University of California, Santa

Barbara, August 2000.

[36] A. Krantz, S. Chodrow, and M. Hircsh. Design and implementation of a

distributed x multiplexor. In Proceedings of the 18th IEEE International

Conference on Distributed Computing Systems, Amsterdam, Netherlands,

May 1998.

[37] L. Lamport. Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM, 21(7):558{568, July 1978.

[38] C. Malloth and A. Schiper. View synchronous communication in large
scale networks. Technical Report BROADCAST TR No. 92, D�epartment

d'Informatique, Ecole Polytechnique F�ed�erale de Lausanne, 1995.

[39] P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Broadcast protocols

for distributed systems. IEEE Transactions on Parallel and Distributed

Systems, 1(1):17{25, January 1990.

[40] D. L. Mills. Network time protocol (version 3) speci�cation, implementa-

tion and analysis. IETF Request for Comments: 1305, March 1992.

[41] S. Mishra and G. Pang. Design and implementation of an availabilityman-

agement service. In Proceedings of the 19th IEEE International Confer-

ence on Distributed Computing Systems Workshop on Middleware, pages

128 { 133, Austin, TX, June 1999.

[42] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended
virtual synchrony. In Proceedings of the 14th IEEE International Con-

ference on Distributed Computing Systems, pages 56{65, Poznan, Poland,
June 1994.

[43] L. E. Moser, P. M. Melliar-Smith, and V. Agrawala. Processor member-

ship in asynchronous distributed systems. IEEE Transactions on Parallel

and Distributed Systems, 5(5):459{473, May 1994.

96 BIBLIOGRAPHY

[44] L. E. Moser, P. M. Melliar-Smith, R. K. Budhia D. A. Agarwal, and

C. A. Lingley-Papadopoulos. Totem: A fault-tolerant multicast group

communication system. Communications of the ACM, 39(4):54{63, April

1996.

[45] P. Narasimhan, Moser L. E., and P. M. Melliar-Smith. Replica consistency

of corba objects in partitionable distributed systems. Distributed Systems

Engineering, 4(3):139{150, September 1997.

[46] NLANR - multicast beacon home page.
http://dast.nlanr.net/Projects/Beacon/.

[47] J. Nonnenmacher, E. W. Biersack, and Towsley D. Parity-based loss

recovery for reliable multicast. IEEE/ACM Transactions on Networking,
6(4):349{361, August 1998.

[48] S. Paul, K. K. Sabnani, J. C. Lin, and S. Bhattacharyya. Reliable mul-
ticast transport protocol (RMTP). IEEE Journal on Selected Areas in

Communications, 15(3):407{421, April 1997.

[49] S. Raman and S. McCanne. Scalable data naming for application level
framing in reliable multicast. In Proceedings of ACM Multimedia '98,

Bristol, United Kingdom, September 1998.

[50] I. Rhee, S. Cheung, P. Hutto, and Sunderam V. Group communication
support for distributed multimedia and CSCW systems. In Proceedings of
the 17th IEEE International Conference on Distributed Computing Sys-

tems, Baltimore, MD, May 1997.

[51] D. Rubenstein, J. Kurose, and D. Towsley. Real-time reliable multicast

using proactive forward error correction. In Proceedings of NOSSDAV

1998, Cambridge, England, July 1998.

[52] A. Schiper and M. Raynal. From group communication to transactions

in distributed systems. Communications of the ACM, 39(4):84{87, April

1996.

[53] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A trans-

port protocol for real-time applications. IETF Request for Comments:
1889, January 1996.

BIBLIOGRAPHY 97

[54] P. Sharma, D. Estrin, S. Floyd, and L. Zhang. Scalable session messages

in srm using self-con�guration. Technical Report 98-670, USC, February

1998.

[55] T. Shiroshita, T. Sano, O. Takahashi, M. Yamashita, N. Yamanouchi,

and T. Kushida. Performance evaluation of reliable multicast transport

protocol for large-scale delivery. In Proceedings of Fifth International

Workshop on Protocols for High-Speed Networks, pages 149{164, Sophia

Antipolis, France, October 1996. Chapman and Hall.

[56] W.T. Strayer, B.J. Dempsey, and A.C. Weaver. XTP: The Xpress Trans-
fer Protocol. Addison-Wesley, 1992.

[57] R. Talpade and M. H. Ammar. Single connection emulation (SCE): An
architecture for providing a reliable multicast transport service. In Pro-

ceedings of the IEEE International Conference on Distributed Computing

Systems, pages 144{151, Vancouver, BC, Canada, May 1995. IEEE Com-

puter Society Press.

[58] R. van Renesse, K. Birman, M. Hayden, A. Vaysburd, and D. Karr. Build-
ing adaptive systems using ensemble. Technical Report TR97-1638, De-
partment of Computer Science, Cornell University, July 1997.

[59] R. van Renesse, K. P. Birman, and S. Ma�eis. Horus: A exible group
communication system. Communications of the ACM, 39(4):76{83, April
1996.

[60] L. Vicisano and J. Crowcroft. One to any reliable bulk-data transfer on

the mbone. In Proceedings of the Third International Workshop on High

Performence Protocol Architectures HIPPARCH '97, Uppsala, Sweden,
June 1997.

[61] R. Vitenberg, I. Keidar, G. V. Chockler, and D. Dolev. Group commu-
nication speci�cations: A comprehensive study. Technical Report CS99-

31, Computer Science Institute, The Hebrew University of Jerusalem,
September 1999. Also MIT Technical Report MIT-LCS-TR-790.

[62] B. Whetten, T. Montgomery, and S. Kaplan. A high performance totally
ordered protocol. In Proceedings of the International Workshop on The-

ory and Practice in Distributed Systems, pages 33{57, Dagstuhl Castle,
Germany, September 1994. Springer-Verlag.

98 BIBLIOGRAPHY

[63] R. Yavatkar, J. Gri�oen, and M. Sudan. A reliable dissemination pro-

tocol for interactive collaborative applications. In Proceedings of ACM

Multimedia, pages 333{44, November 1995.

